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1 Introduction

1.1 The Cubic Wall of Kohn-Sham Density-Functional Theory

In KS-DFT [1], the many-electron problem for the Born-Oppenheimer electronic ground state is reduced to a system of
single particle equations known as the Kohn-Sham equations

ĥKSψl = εlψl, (1.1)

where ψl and εl are Kohn-Sham orbitals and their associated eigenenergies, and ĥKS denotes the Kohn-Sham Hamil-
tonian, which includes the kinetic energy, the average electrostatic potential of the electron density and of the nuclei
(i.e. the Hartree potential), the exchange-correlation potential, and possible additional potential terms from external
electromagnetic fields. These terms depend on the electron density n, which is determined by the Kohn-Sham orbitals
ψl. These terms also enter the Hamiltonian ĥKS, which determines the Kohn-Sham orbitals ψl.

Due to this circular dependency, the Kohn-Sham equations are in fact a non-linear optimization problem, and therefore
must be solved iteratively. The most commonly used method is the self-consistent field (SCF) approach. It usually starts
from an initial guess of the electron density, from which the kinetic energy, electrostatic potential, exchange-correlation
potential, and external potential are computed, forming the Kohn-Sham Hamiltonian. Then, the Kohn-Sham orbitals
(wavefunctions) are solved from the Hamiltonian, and new electron density is computed from the Kohn-Sham orbitals.
To achieve self-consistency, the electron density is updated in every SCF iteration until converged to an acceptable level.

In almost all practical approaches, Nbasis basis functions φi(r) are employed to approximately expand the Kohn-Sham
orbitals:

ψl(r) =

Nbasis∑
j=1

cjlφj(r). (1.2)

The choice of basis set is one of the critical decisions in the design of an electronic structure code. Using non-orthogonal
basis functions (e.g., Gaussian functions, Slater functions, numeric atom-centered orbitals) in 1.2 converts 1.1 to a gen-
eralized eigenvalue problem ∑

j

hijcjl = εl
∑
j

sijcjl, (1.3)

where hij and sij are the elements of the Hamiltonian matrix H and the overlap matrix S, which can be computed
through numerical integrations:

hij =

∫
d3r[φ∗i (r)ĥKSφj(r)],

sij =

∫
d3r[φ∗i (r)φj(r)].

(1.4)

1.3 can thus be expressed in the following matrix form:

Hc = εSc. (1.5)

Here, the matrix c and diagonal matrix ε contain the eigenvectors and eigenvalues, respectively, of the eigensystem of
the matrices H and S.
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When using orthonormal basis sets (e.g. plane waves, multi-resolution wavelets), the eigenproblem described in 1.5
reduces to a standard form where sij = δij .

The explicit solution of 1.3 or 1.5 yields the Kohn-Sham orbitals ψi, from which the electron density n(r) can be com-
puted following an orbital-based method:

n(r) =

Nbasis∑
l=1

flψ
∗
l (r)ψl(r), (1.6)

where fl denotes the occupation number of each orbital. In an actual computation, it is sufficient to perform the sum-
mation only for the occupied (fl > 0) orbitals. The ratio of occupied orbitals to the total number of basis functions can
be below 1% for plane wave basis sets, whereas with some localized basis sets, fewer basis functions are required, leading
to a larger fraction of occupied states typically between 10% and 50%.

An alternative method can be employed for localized basis functions:

n(r) =

Nbasis∑
i,j

φ∗i (r)pijφj(r), (1.7)

with pij being the elements of the density matrix P that need to be computed before the density update:

pij =

Nbasis∑
l=1

flcilcjl. (1.8)

From a viewpoint of computational complexity, with localized basis functions, almost all standard pieces of solving the
Kohn-Sham equations can be formulated in a linear scaling fashion with respect to the system size. The only remaining
bottleneck for semilocal functionals is the eigenproblem described in Eqs. 1.3 and 1.5. The density matrix is directly
accessible through methods other than diagonalization, therefore it is not always necessary to explicitly solve the eigen-
problem. Which algorithm to use depends on many factors such as the choice of basis set, and the system and characters
of the physical systems. In an SCF calculation, the eigenproblem needs to be tackled repeatedly. If this step is treated
with the most efficient algorithm, the whole SCF calculation can be greatly accelerated.

1.2 ELSI, the ELectronic Structure Infrastructure

ELSI unifies the community effort in overcoming the cubic-wall problem of KS-DFT by bridging the divide between
developers of electronic structure solvers and KS-DFT codes. Via a unified interface, ELSI gives KS-DFT developers
easy access to multiple solvers that solve or circumvent the Kohn-Sham eigenproblem efficiently. Solvers are treated
on equal footing within ELSI, giving solver developers a unified platform for implementation and benchmarking across
codes and physical systems. Solvers may be switched dynamically in an SCF cycle, allowing the KS-DFT developer to
mix-and-match strengths of different solvers. Solvers can work cooperatively with one another within ELSI, allowing for
acceleration greater than either solver can achieve individually. Most importantly, ELSI exists as a community for KS-
DFT and solver developers to interact and work together to improve performance of solvers, with monthly web meetings
to discuss progress on code development, yearly on-site “connector meetings”, and planned webinars and workshops.

The current version of ELSI supports ELPA [3, 4], libOMM [2], PEXSI [5, 6], and SLEPc-SIPs [7, 8] solvers. Codes
currently integrated with ELSI include DFTB+ [9], DGDFT [10], FHI-aims [11], NWChem [12] via Global Arrays, and
SIESTA [13].

1.2.1 Design Tenets of ELSI

Versatility: ELSI supports real-valued and complex-valued density matrix, eigenvalue, and eigenvector calculations. A
unified software interface designed for rapid integration into a variety of KS-DFT codes is provided. Fortran and C/C++
interfaces are provided.

Flexibility: ELSI supports both dense and sparse matrices as input/output. Supported matrix distribution layouts
include 2D block-cyclic distribution, 1D block-cyclic distribution, and 1D block distribution. In situations where the
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input/output matrix format requested by the calling KS-DFT code and the format used internally by the requested
solver are different, conversion and redistribution of matrices will be performed automatically.

Scalability: The solver libraries collected in ELSI are highly scalable. For instance, ELPA can scale to a hundred
thousand CPU cores given a sufficiently large problem to solve, and PEXSI, with its efficient two-level parallelism, easily
scales to tens of thousands of CPU cores.

Portability: ELSI and its redistributed library source packages have been confirmed to work on commonly-used HPC
architectures (Cray, IBM, Intel, NVIDIA) using major compilers (Cray, GNU, IBM, Intel, PGI).

1.3 Kohn-Sham Solver Libraries Supported by ELSI

The current version of ELSI stably supports ELPA [3, 4], libOMM [2], PEXSI [5, 6], and SLEPc-SIPc solvers [7, 8]. The
table below summarizes the supported data type, input/output matrix format, and possible output quantities of the
solvers in ELSI.

Solver Data Type Matrix format Output
ELPA Real/complex Dense/sparse Eigenvalues, eigenvectors, density matrix, energy-weighted

density matrix, chemical potential, electronic entropy
libOMM Real/complex Dense/sparse Density matrix, energy-weighted density matrix
PEXSI Real/complex Dense/sparse Density matrix, energy-weighted density matrix, chemical po-

tential
SLEPc-SIPs Real Dense/sparse Eigenvalues, eigenvectors, density matrix, energy-weighted

density matrix, chemical potential, electronic entropy

What follows is a brief introduction of the solvers currently supported in ELSI. For detailed technical descriptions of
the solvers, the reader is referred to the original publications of the solvers, e.g., those in the reference list of this document.

1.3.1 ELPA: Eigenvalue Solvers for Petaflop-Applications

The explicit solution of a generalized or standard eigenproblem is a well-studied task. The generalized eigenproblem in
1.5 is first transformed to the standard form, e.g., by Cholesky decomposition of the overlap matrix S:

S = LL∗, (1.9)

where L is a lower triangular matrix. Applying L to H and c in the following way

H̃ = L−1H(L∗)−1,

c̃ = L∗c,
(1.10)

transforms 1.5 to a standard eigenproblem

H̃c̃ = εc̃. (1.11)

This standard eigenproblem is solved by further transforming it to a tridiagonal form

T = QH̃Q∗, (1.12)

where Q is a transformation matrix, and T is a tridiagonal matrix whose eigenvalues and eigenvectors are computed
by, e.g., the divide-and-conquer approach or the MRRR method. This procedure is called “diagonalization”, as the full
matrix is reduced to a (tri)diagonal form.

The massively parallel direct eigensolver ELPA [3, 4] facilitates the direct solution of symmetric or Hermitian eigen-
problems on high-performance computers by adopting a two-stage diagonalization algorithm, which first reduces the full
matrix to a banded intermediate form, then to the tridiagonal form:

B = Q1H̃Q
∗
1,

T = Q2BQ
∗
2.

(1.13)
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where Q1 and Q2 are transformation matrices used in the two-stage diagonalization; B is a banded matrix; and T is a
tridiagonal matrix. Compared to the one-stage diagonalization (1.12), the two-stage approach introduces two additional
steps. Still, the two-stage approach has been shown to enable faster computation and better parallel scalability on
present-day computers. Specifically, the matrix-vector operations (BLAS level-2 routines) in 1.12 can be mostly replaced
by more efficient matrix-matrix operations (BLAS level-3 routines) in 1.13. The computational workload associated with
the back-transformation of the eigenvectors is greatly alleviated if only a small fraction of the eigenvectors representing
the lowest eigenstates is required, and by architecture-specific linear-algebra “kernels” provided with the ELPA library.

1.3.2 libOMM: Orbital Minimization Method

Instead of diagonalizing the Nbasis×Nbasis eigenproblem, the orbital minimization method (OMM) minimizes an uncon-
strained energy functional using a set of auxiliary Wannier functions. At the minimum of the OMM energy functional,
the Wannier functions can be used to construct the density matrix. Specifically, NW non-orthogonal Wannier functions
χk are employed to represent the occupied subspace of a system with Nelectron electrons:

χk =

Nbasis∑
j=1

Wkjφj . (1.14)

For non-spin-polarized systems, the index k runs from 1 to NW = Nelectron/2. Then the matrices H and S are trans-
formed into the occupied subspace

Homm = W ∗HW ,

Somm = W ∗SW ,
(1.15)

where W is the coefficient matrix of the Wannier functions, whose dimension is Nbasis × NW; Homm and Somm are
NW ×NW matrices. The OMM energy functional can then be evaluated from Homm and Somm:

E[W ] = 4Tr[Homm]− 2Tr[SommHomm]. (1.16)

This energy functional, when minimized with respect to the coefficients of Wannier functions W , is equal to the “band
structure” energy

EBS =

Nbasis∑
l=1

flεl, (1.17)

i.e. the sum of the energies of all eigenstates, weighted with their respective occupation numbers. Furthermore, the
Wannier functions are driven towards perfect orthonormality at this minimum. The density matrix is then constructed
from the Wannier functions that minimize E[W ]. Although this density matrix is sufficient for the electron density up-
date following 1.7, without knowledge of individual eigenstates, the orbital minimization method cannot handle systems
with fractional occupation numbers.

Different from the originally proposed linear scaling OMM method, the OMM implementation in the libOMM library
[2] is a cubic scaling density matrix solver. Theoretically, this implementation has a smaller prefactor than the direct
diagonalization method. In libOMM, the minimization of the OMM energy functional is carried out with the conjugate-
gradient (CG) method, whose performance mainly depends on the convergence rate of the minimization.

1.3.3 PEXSI: Pole Expansion and Selected Inversion

The pole expansion and selected inversion (PEXSI) method [5, 6] expands the density matrix P in 1.8 using a pole
expansion:

P =
∑
=
(
ωl(H − (zl + µ)S)−1

)
. (1.18)

The shifts {zl} and weights {ωρl } of the poles are optimized to expand the Fermi operator. The number of terms needed
by this expansion is proportional to log(β∆E), where β = 1/(kBT ), kB is the Boltzmann constant, T is the electronic
temperature, and ∆E is the width of the eigenspectrum. This logarithmic scaling makes the pole expansion a highly
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efficient approach. In most cases, ∼ 20 poles are already sufficient for the result obtained from PEXSI to be fully com-
parable to that obtained from diagonalization.

In PEXSI, only selected elements of the object (H − (zl + µ)S)−1 (and thus the density matrix), which correspond to
the non-zero elements of H and S, are computed with the parallel selected inversion method. The computational cost
scales at most as O(N2) for semilocal DFT. The actual complexity depends on the dimensionality of the system: O(N),
O(N1.5), and O(N2) for 1D, 2D, and 3D systems, respectively. This favorable scaling hinges on the sparse character of
the Hamiltonian and overlap matrices, but not on the existence of an energy gap. The PEXSI method is thus generally
applicable to systems with and without a gap.

Designed in a multi-level parallelism structure, the PEXSI method is highly scalable, and can make efficient use of tens
of thousands of processors on high performance computers.

1.3.4 SLEPc-SIPs: Shift-and-Invert Parallel Spectral Transformation Eigensolver in SLEPc

The shift-and-invert spectral transformation method, implemented in the SLEPc library [7], transforms the eigenproblem
1.5 by shifting the eigenspectrum:

(H − σS) = (ε− σ)Sc, (1.19)

where σ is a diagonal matrix with diagonal elements all equal to the shift σ. This shifted eigenproblem is converted to
the standard form by inverting (H − σS) and (ε− σ):

(H − σS)−1Sc = (ε− σ)−1c, (1.20)

which can be written in a form similar to 1.11:

H̃c = ε̃c. (1.21)

Here, the eigenvectors are not altered by the shift-and-invert transformation, and the eigenvalues of 1.21 relate to the
original ones via

ε̃ = (ε− σ)−1. (1.22)

If the shift can be chosen to be close to the target eigenvalue, 1.22 makes the magnitude of the transformed eigenvalues
large, accelerating the convergence of the iterative Krylov-Schur eigensolver used in SLEPc.

On top of the basic shift-and-invert, the shift-and-invert parallel spectral transformation (SIPs) method [8] partitions
the eigenspectrum of a given eigenproblem into Nslice slices. Accordingly, the processes involved in the calculation are
split into Nslice groups, each of which solves one slice independently. Within the slices, carefully selected shifts are
applied to the original problem. With this layer of parallelism across slices, the SLEPc-SIPs solver has the potential
to exhibit enhanced scalability over direct diagonalization methods, especially when the load balance across slices can
be guaranteed. Indeed, this has been reported to happen with very sparse Hamiltonian and overlap matrices out of
density-functional tight-binding (DFTB) calculations [8].

1.4 Acknowledgments

ELSI is a National Science Foundation Software Infrastructure for Sustained Innovation - Scientific Software Integration
(SI2-SSI) supported software infrastructure project. The ELSI Interface software and this User’s Guide are based upon
work supported by the National Science Foundation under Grant Number 1450280. Any opinions, findings, and conclu-
sions or recommendations expressed here are those of the authors and do not necessarily reflect the views of the National
Science Foundation.
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2 Installation of ELSI

2.1 Overview

The ELSI package contains the ELSI Interface software as well as redistributed source code for the solver libraries ELPA
(version 2016.11.001), libOMM, PEXSI (version 1.0.1). We highly encourage all users to request access to our GitLab
serverGitLab server, where we regularly update ELSI between releases while preserving stability.

Starting from the May 2018 release, the installation of ELSI makes use of the CMake software.

2.2 Prerequisites

To build ELSI, the minimum requirements are:

CMake [version 3.0 or newer]

Fortran compiler [with Fortran 2003]

C compiler [with C99]

MPI

Building the PEXSI solver (highly recommended) requires:

C++ compiler [with C++ 11]

Building the SLEPc-SIPs solver requires:

SLEPc [version 3.8.3 only]

PETSc [version 3.8.4 only, with SuperLU_DIST, MUMPS, ParMETIS, and PT-SCOTCH enabled]

Linear algebra libraries should be provided for ELSI to link against:

BLAS, LAPACK, BLACS, ScaLAPACK

By default, the redistributed ELPA and libOMM libraries will be built. If PEXSI is enabled during configuration, the
redistributed PEXSI library and its dependencies, namely the SuperLU DIST and PT-SCOTCH libraries, will be built
as well. Optionally, the redistributed ELPA, libOMM, SuperLU DIST and PT-SCOTCH libraries may be substituted by
user’s optimized versions. Please note that in the current version of ELSI, an external version of PEXSI is not officially
supported.

2.3 CMake Basics

This section covers some basics of using CMake. Users who are familiar with CMake may safely skip this section.

The typical workflow of using CMake to build ELSI looks like:
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$ ls

CMakeLists.txt external/ src/ test/ ...

$ mkdir build

$ cd build

$ cmake [options] ..

...

...

-- Generating done

-- Build files have been written to: /current/dir

$ make [-j np]

$ make install

Whenever CMake is invoked, one of the command line arguments must point to the path where the top level CMake-
Lists.txt file exists, hence the “..” in the above example.

By default, CMake generates standard UNIX makefiles including specific rules to build the project with GNU make.
Other build systems may be chosen with the “-G” (G for generator) option of CMake. We recommend Ninja in partic-
ular, which is a small build system with a focus on speed. A version of Ninja with Fortran support is freely available here.

To build ELSI with Ninja:

$ ls

CMakeLists.txt external/ src/ test/ ...

$ mkdir build

$ cd build

$ cmake -G Ninja [options] ..

...

...

-- Generating done

-- Build files have been written to: /current/dir

$ ninja [-j np]

$ ninja install

With CMake, an option can be defined by adding

-DKeyword=Value

to the command line when invoking CMake. If “Keyword” is of type boolean, its “Value” may be “ON” or “OFF”. If
“Keyword” is a list of libraries or include directories, its items should be separated with “;” (semicolon) or “ ” (space).

For example,

-DCMAKE_INSTALL_PREFIX=/path/to/install/elsi

-DCMAKE_C_COMPILER=gcc

-DENABLE_TESTS=OFF

-DENABLE_PEXSI=ON

-DINC_PATHS="/path/to/include;/another/path/to/include"

-DLIBS="library1 library2 library3"
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Available options for building ELSI with CMake are introduced in the next sections. Other options of CMake itself are
available in its online documentation.

2.4 Configuration

2.4.1 Compilers

CMake automatically detects and sets compilers. The choices made by CMake often work, but not necessarily guarantee
the optimal performance. In some cases, the compilers picked up by CMake may not be the ones desired by the user.
To build ELSI, it is mandatory that the user explicitly sets the identification of the compilers:

-DCMAKE_Fortran_COMPILER=YOUR_MPI_FORTRAN_COMPILER

-DCMAKE_C_COMPILER=YOUR_MPI_C_COMPILER

-DCMAKE_CXX_COMPILER=YOUR_MPI_C++_COMPILER

Please note that the C++ compiler is not needed if building ELSI without PEXSI.

In addition, it is highly recommended to specify the compiler flags, in particular the optimization flags:

-DCMAKE_Fortran_FLAGS=YOUR_FORTRAN_COMPILE_FLAGS

-DCMAKE_C_FLAGS=YOUR_MPI_C_COMPILE_FLAGS

-DCMAKE_CXX_FLAGS=YOUR_MPI_C++_COMPILE_FLAGS

2.4.2 Solvers

The ELPA, libOMM, and PEXSI solver libraries, as well as the SuperLU DIST and PT-SCOTCH libraries (both required
by PEXSI), are redistributed with the current ELSI package.

The redistributed version of ELPA comes with a few “kernels” specifically written to take advantage of processor ar-
chitecture (e.g. vectorization instruction set extensions). A kernel may be chosen by the ELPA2 KERNEL keyword.
Available options are:

-DELPA2_KERNEL=BGQ

-DELPA2_KERNEL=AVX

-DELPA2_KERNEL=AVX2

-DELPA2_KERNEL=AVX512

for the IBM Blue Gene Q, Intel AVX, Intel AVX2, and Intel AVX512 architectures, respectively. In ELPA, these kernels
are employed to accelerate the calculation of eigenvectors, which is often a computational bottleneck when calculating
a large percentage of eigenvectors. If this is the case in the user’s application, it is highly recommended that the user
selects the kernel most suited to their system architecture.

Experienced users are encouraged to link the ELSI interface against external, better optimized solver libraries. Relevant
options for this purpose are:

-DUSE_EXTERNAL_ELPA=ON

-DUSE_EXTERNAL_OMM=ON

-DUSE_EXTERNAL_SUPERLU=ON

The external libraries and the include paths should be set via the following three keywords:

-DLIB_PATHS=DIRECTORIES_CONTAINING_YOUR_EXTERNAL_LIBRARIES

-DINC_PATHS=INCLUDE_DIRECTORIES_OF_YOUR_EXTERNAL_LIBRARIES

-DLIBS=NAMES_OF_YOUR_EXTERNAL_LIBRARIES

10



Each of the above keywords is a space-separated or semicolon-separated list. If an external library depends on additional
libraries, LIBS should include all the relevant libraries. For instance, LIBS should include the ELPA library and CUDA
libraries when using an external ELPA compiled with GPU (CUDA) support; LIBS should include the SuperLU DIST
library and the sparse matrix reordering library used to compile SuperLU DIST when using an external SuperLU DIST.
Please note that in the current version of ELSI, an external version of PEXSI is not officially supported.

The PEXSI and SLEPc-SIPs solvers are not enabled by default. PEXSI may be activated by specifying:

-DENABLE_PEXSI=ON

if using redistributed SuperLU DIST with PT-SCOTCH, or

-DENABLE_PEXSI=ON

-DUSE_EXTERNAL_SUPERLU=ON

-DINC_PATHS="/path/to/superlu_dist/include;/path/to/matrix/reordering/include"

-DLIB_PATHS="/path/to/superlu_dist/library;/path/to/matrix/reordering/include"

-DLIBS="superlu_dist;your_choice_of_matrix_reordering_library"

if using an externally compiled SuperLU DIST. SuperLU DIST 5.3.0, which has been extensively tested with ELSI, is
recommended. Older/newer versions may or may not work properly with this version of ELSI.

SLEPc-SIPs may be activated by specifying:

-DENABLE_SIPS=ON

-DUSE_EXTERNAL_SUPERLU=ON

-DINC_PATHS="/path/to/slepc/include;/path/to/slepc/${PETSC_ARCH}/include;

/path/to/petsc/include;/path/to/${PETSC_ARCH}/include"

-DLIB_PATHS="/path/to/slepc/${PETSC_ARCH}/library;/path/to/petsc/${PETSC_ARCH}/library"

-DLIBS="slepc;petsc;cmumps;dmumps;smumps;zmumps;mumps_common;pord;superlu_dist;parmetis;

metis;ptesmumps;ptscotchparmetis;ptscotch;ptscotcherr;esmumps;scotchmetis;scotch;scotcherr"

SLEPc 3.8.3 and PETSc 3.8.4, which have been extensively tested with ELSI, are recommended. Older/newer ver-
sions may or may not work properly with this version of ELSI. The PETSc library must be compiled with MPI sup-
port, and (at least) with external packages SuperLU DIST, MUMPS, ParMETIS, and PT-SCOTCH enabled. The Su-
perLU DIST library redistributed through ELSI must be turned off by setting USE EXTERNAL SUPERLU to “ON”,
as SuperLU DIST is already present in the PETSc installation.

2.4.3 Build Targets

By default, a static library (libelsi.a) will be created as the target of the compilation. Building ELSI as a shared library
may be enabled by:

-DBUILD_SHARED_LIBS=ON

Building ELSI test programs may be enabled by:

-DENABLE_TESTS=ON

In either case, linear algebra libraries, BLAS, LAPACK, BLACS, and ScaLAPACK, should be valid in the LIB PATHS
and LIBS keywords.

If test programs are enabled, the compilation of ELSI may be verified by
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$ make test

or

$ ninja test

depending on the generator option “-G” used when invoking CMake. Alternatively, issue

$ ctest

to let the CTest program perform the tests.

Note that the tests may not run if launching MPI jobs is prohibited on the user’s working platform.

In order to install ELSI at the location specified by CMAKE INSTALL PREFIX, issue

$ make install

or

$ ninja install

depending on the CMake generator option “-G” used.

Among the files copied to the installation destinations is a CMake configuration file called elsiConfig.cmake. This file
includes all the information about how the ELSI library and its dependencies should be included in an external CMake
project. Please refer to 2.5 for information regarding linking a third-party package against ELSI.

2.4.4 List of All Configure Options

The options accepted by the ELSI CMake build system are listed here in alphabetical order. Some additional explana-
tions are made below the table.

Option Type Default Explanation
ADD UNDERSCORE boolean ON Suffix C functions with an underscore
BUILD SHARED LIBS boolean OFF Build ELSI as a shared library
CMAKE C COMPILER string none MPI C compiler
CMAKE C FLAGS string none C flags
CMAKE CXX COMPILER string none MPI C++ compiler
CMAKE CXX FLAGS string none C++ flags
CMAKE Fortran COMPILER string none MPI Fortran compiler
CMAKE Fortran FLAGS string none Fortran flags
CMAKE INSTALL PREFIX path /usr/local Path to install ELSI
ELPA2 KERNEL string none ELPA2 kernel
ENABLE C TESTS boolean OFF Build C test programs
ENABLE PEXSI boolean OFF Enable PEXSI support
ENABLE SIPS boolean OFF Enable SLEPc-SIPs support
ENABLE TESTS boolean OFF Build Fortran test programs
INC PATHS string none Include directories of external libraries
LIB PATHS string none Directories containing external libraries
LIBS string none External libraries
MPIEXEC NP string mpirun -n 4 Command to run tests in parallel with MPI
MPIEXEC 1P string mpirun -n 1 Command to run tests in serial with MPI
SCOTCH LAST RESORT string none Command to invoke PT-SCOTCH header generator
USE EXTERNAL ELPA boolean OFF Use external ELPA
USE EXTERNAL OMM boolean OFF Use external libOMM and MatrixSwitch
USE EXTERNAL SUPERLU boolean OFF Use external SuperLU DIST
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Remarks

1) ADD UNDERSCORE: In the PEXSI and SuperLU DIST code redistributed through ELSI, there are calls to functions
of the linear algebra libraries, e.g. “dgemm”. If ADD UNDERSCORE is “ON”, the code will call “dgemm ” instead
of “dgemm”. Turn this keyword on if routines are suffixed with “ ” in external linear algebra libraries. Turn it off if
routines are not suffixed with “ ”.

2) ELPA2 KERNEL: There are a number of computational kernels available with the ELPA solver. Choose from “BGQ”
(IBM Blue Gene Q), “AVX” (Intel AVX), “AVX2” (Intel AVX2), and “AVX512” (Intel AVX512). See 2.4.2 for more
information.

3) SCOTCH LAST RESORT: The compilation of the PT-SCOTCH library is a multi-step process. First, two auxiliary
executables are compiled. Then, header files of the library are generated by running the two compiled executables.
Finally, the main source files of the library are compiled with the generated header files included. The header generation
step may fail on platforms where directly running an executable is prohibited on a login/compile node. Often this can
be circumvented by requesting an interactive session to a compute node and performing the compilation there, or by
submitting the whole compilation as a job to the queuing system. However, this may still fail on platforms where an
executable compiled with MPI must be launched by an MPI job launcher (aprun, mpirun, srun, etc). If the standard
compilation of PT-SCOTCH fails due to this reason, the user may set SCOTCH LAST RESORT to the command that
starts an MPI job with one MPI task, e.g. “mpirun -n 1”. This command will be used to launch the auxiliary executables
to generate necessary header files for PT-SCOTCH.

4) External libraries: ELSI redistributes source code of ELPA, libOMM, PEXSI, SuperLU DIST, and PT-SCOTCH
libraries, which by default will be built together with the ELSI interface. Experienced users are encouraged to link the
ELSI interface against external, better optimized solver libraries. See 2.4.2 for more information.

2.4.5 “Toolchain” Files

It is sometimes convenient to edit the settings in a “toolchain” file that can be read by CMake:

-DCMAKE_TOOLCHAIN_FILE=YOUR_TOOLCHAIN_FILE

Example “toolchains” are provided in the “./toolchains” directory of the ELSI package, which the user may use as
templates to create new ones.

2.5 Importing ELSI into Third-Party Code Projects

2.5.1 Linking against ELSI: CMake

A CMake configuration file called elsiConfig.cmake should be generated after ELSI is successfully installed (see 2.4.3).
This file contains all the information about how the ELSI library and its dependencies should be included in an external
project. For a project using CMake, only two lines are required to find and link to ELSI:

find_package(elsi REQUIRED)

target_link_libraries(my_project PRIVATE elsi::elsi)

If a minimum version of ELSI is required, this information may be passed to find package by:

find_package(elsi 2.0 REQUIRED)

If the installed ELSI version is older than the requested minimum version, CMake stops with an appropriate error mes-
sage. Other options of find package are available in the documentation of CMake.
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2.5.2 Linking against ELSI: Makefile

For a project using makefiles, an example set of compiler flags to link against ELSI would be:

ELSI_INCLUDE = -I/PATH/TO/BUILD/ELSI/include

ELSI_LIB = -L/PATH/TO/BUILD/ELSI/lib -lelsi \

-lfortjson -lOMM -lMatrixSwitch -lelpa -lpexsi -lsuperlu_dist \

-lptscotchparmetis -lptscotch -lptscotcherr \

-lscotchmetis -lscotch -lscotcherr

Enabling/disabling PEXSI and SLEPc-SIPs or linking ELSI against preinstalled solver libraries will require the user
modify these flags accordingly.

2.5.3 Using ELSI in a KS-DFT Code

ELSI may be used in a KS-DFT code by importing the appropriate header file. For codes written in Fortran, this is
done by using the ELSI module

USE ELSI

For codes written in C, the ELSI wrapper may be imported by including the header file

#include <elsi.h>

These import statements give the KS-DFT code access to the ELSI interface. In the next chapter, we will describe the
API for the ELSI interface.
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3 The ELSI API

3.1 Overview of the ELSI API

In this chapter, we present the public-facing API for the ELSI Interface. We anticipate that fine details of this interface
may change slightly in the future, but the fundamental structure of the interface layer is expected to remain consistent.
While this chapter serves as a reference to the ELSI subroutines, the user is encouraged to explore the demonstration
pseudo-codes of ELSI in 3.8.

To allow multiple instances of ELSI to co-exist within a single calling code, we define an elsi handle data type to en-
capsulate the state of an ELSI instance, i.e., all runtime parameters associated with the ELSI instance. An elsi handle

instance is initialized with the elsi init subroutine and is subsequently passed to all other ELSI subroutine calls.

ELSI provides a C interface in addition to the native Fortran interface. The vast majority of this chapter, while written
from a Fortran-ic standpoint, applies equally to both interfaces. Information specifically about the C wrapper for ELSI
may be found in 3.9.

3.2 Setting Up ELSI

3.2.1 Initializing ELSI

The ELSI interface must be initialized via the elsi init subroutine before any other ELSI subroutine may be called.

elsi init(handle, solver, parallel mode, matrix format, n basis, n electron, n state)

Argument Data Type in/out Explanation
handle type(elsi handle) out Handle to ELSI.
solver integer in Desired KS solver. Accepted values are: 1 (ELPA), 2 (LI-

BOMM), 3 (PEXSI), and 5 (SLEPc-SIPs).
parallel mode integer in Parallelization mode. See remark 3. Accepted values are:

0 (SINGLE PROC) and 1 (MULTI PROC).
matrix format integer in Matrix format. See remark 1. Accepted values are: 0

(BLACS DENSE), 1 (PEXSI CSC), and 2 (SIESTA CSC).
n basis integer in Number of basis functions, i.e. global size of Hamiltonian.
n electron real double in Number of electrons.
n state integer in Number of states. See remark 2.

Remarks

1) matrix format: BLACS DENSE(0) refers a dense matrix format in a 2-dimensional block-cyclic distribution, i.e. the
BLACS standard. PEXSI CSC(1) refers to a compressed sparse column (CSC) matrix format in a 1-dimensional block
distribution. SIESTA CSC(2) refers to a compressed sparse column (CSC) matrix format in a 1-dimensional block-cyclic
distribution. As the Hamiltonian, overlap, and density matrices are symmetric (Hermitian), compressed sparse row
(CSR) matrix format is effectively supported.
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2) n state: If ELPA is the chosen solver, this parameter specifies the number of eigenstates to solve by the eigensolver. If
libOMM is the chosen solver, n state must be exactly the number of occupied states, as libOMM cannot handle fractional
occupation numbers[2]. PEXSI does not make use of this parameter and a dummy value may be passed.

3) parallel mode: The two allowed values of parallel mode, 0 (SINGLE PROC) and 1 (MULTI PROC), allow for three
parallelization strategies commonly employed by KS-DFT codes. See below.

3a) SINGLE PROC: Solves the KS eigenproblem following a LAPACK-like fashion. This option may only be selected
when ELPA is chosen as the solver. This allows the following parallelization strategy:

SINGLE PROC Example:

Every MPI task independently handles a group of k -points uniquely assigned to it.

Example number of k -points: 16
Example number of MPI tasks: 4

MPI task 0 handles k -points 1, 2, 3, 4 sequentially;
MPI task 1 handles k -points 5, 6, 7, 8 sequentially;
MPI task 2 handles k -points 9, 10, 11, 12 sequentially;
MPI task 3 handles k -points 13, 14, 15, 16 sequentially.

Pseudocode 1:

elsi init(elsi h, ..., parallel mode=0, ...)
...
for i kpt = 1, n kpt local, 1 do

elsi ev {real|complex}(elsi h, ham this kpt, ovlp this kpt, eval this kpt, evec this kpt)

end

3b) MULTI PROC: Solves the KS eigenproblem following a ScaLAPACK-like fashion. This allows the usage of the
following two parallelization strategies:

MULTI PROC Example:

Groups of MPI tasks coordinate to handle the same k -point, uniquely assigned to that group.

Example number of k -points: 4
Example number of MPI tasks: 16

MPI tasks 0, 1, 2, 3 cooperatively handle k -point 1;
MPI tasks 4, 5, 6, 7 cooperatively handle k -point 2;
MPI tasks 8, 9, 10, 11 cooperatively handle k -point 3;
MPI tasks 12, 13, 14, 15 cooperatively handle k -point 4.

Pseudocode 2:
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elsi init(elsi h, ..., parallel mode=1, ...)
elsi set mpi(elsi h, my mpi comm)
...
elsi ev {real|complex}(elsi h, my ham, my ovlp, my eval, my evec)

or

elsi init(elsi h, ..., parallel mode=1, ...)
elsi set mpi(elsi h, my mpi comm)
elsi set kpoint(elsi h, n kpt, my kpt, my weight)
elsi set mpi global(elsi h, mpi comm global)
...
elsi dm complex(elsi h, my ham, my ovlp, my dm, global energy)

Please note that when there is more than one k -point, a global MPI communicator must be provided for inter-k -point
communications. See 3.2.4 for elsi set kpoint, elsi set spin, and elsi set mpi global, which are used to set up a calculation
with two spin channels and/or multiple k -points.

3.2.2 Setting Up MPI

The MPI communicator used by ELSI is passed into ELSI by the calling code via the elsi set mpi subroutine. When there
is more than one k -point and/or spin channel, this communicator will be used only for solving one problem corresponding
to one k -point and one spin channel. See 3.2.4 for details.

elsi set mpi(handle, mpi comm)

Argument Data Type in/out Explanation
handle type(elsi handle) inout Handle to ELSI.
mpi comm integer in MPI communicator.

3.2.3 Setting Up Matrix Formats

When using the 2D block-cyclic distributed dense matrix format (BLACS DENSE), BLACS parameters are passed into
ELSI via the elsi set blacs subroutine. The matrix format used internally in the ELSI interface and the ELPA solver
requires the block sizes of the 2-dimensional block-cyclic distribution are the same in the row and column directions. It
is necessary to call this subroutine before calling any solver interface that makes use of the BLACS DENSE matrix format.

elsi set blacs(handle, blacs ctxt, block size)

Argument Data Type in/out Explanation
handle type(elsi handle) inout Handle to ELSI.
blacs ctxt integer in BLACS context.
block size integer in Block size of the 2D block-cyclic distribution, specifying

both row and column directions.

When using the sparse matrix formats, namely 1D block distributed compressed sparse column (PEXSI CSC) or 1D
block-cyclic distributed compressed sparse column (SIESTA CSC), the sparsity pattern should be passed into ELSI via
the elsi set csc subroutine. It is necessary to call this subroutine before calling any solver interface that makes use of the
sparse matrix formats.
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elsi set csc(handle, global nnz, local nnz, local col, row idx, col ptr)

Argument Data Type in/out Explanation
handle type(elsi handle) inout Handle to ELSI.
global nnz integer in Global number of non-zeros.
local nnz integer in Local number of non-zeros.
local col integer in Local number of matrix columns.
row idx integer, rank-1 array in Local row index array. Dimension: local nnz.
col ptr integer, rank-1 array in Local column pointer array. Dimension: local col+1.

When using the 1D block distributed compressed sparse column (PEXSI CSC) format, the block size of the distribution
cannot be set by the user. This is because the PEXSI solver requires that the block size must be floor(N basis/N procs),
where floor(x) is the greatest integer less than or equal to x, N basis and N procs are the number of basis functions
and the number of MPI tasks, respectively. When using the 1D block-cyclic distributed compressed sparse column
(SIESTA CSC) format, the block size of the 1D distribution must be explicitly set by calling elsi set csc blk.

elsi set csc blk(handle, block size)

Argument Data Type in/out Explanation
handle type(elsi handle) inout Handle to ELSI.
global nnz integer in Block size of the 1D block-cyclic distribution.

In most cases, input and output matrices should be distributed across all MPI tasks. The only exception happens when
using the PEXSI solver, one of the sparse density matrix interfaces (elsi dm real sparse or elsi dm complex sparse), and
the PEXSI CSC matrix format. In this case, an additional parameter, pexsi np per pole, must be set by the user. Input
and output matrices should be 1D-block-distributed among the first pexsi np per pole MPI tasks (not all the MPI tasks).
Please also read the 2nd remark in 3.5.4 for more information.

3.2.4 Setting Up Multiple k-points and/or Spin Channels

When there is more than one k -point and/or spin channel in the simulating system, the ELSI interface can be set up
to support parallel calculation of the k -points and/or spin channels. The base case is an isolated system, e.g. atoms,
molecules, clusters, without spin-polarization. In this case, in each SCF iteration, there is one KS eigenproblem (1.5) to
solve. If the isolated system is spin-polarized, there are two eigenproblems:

Hαcα = εαSαcα,

Hβcβ = εβSβcβ ,
(3.1)

where α and β denote the two spin channels. The overlap matrices are generally the same for the two spin channels, but
the Hamiltonian matrices are not. These two eigenproblems can be solved one after another using all available processes,
or can be solved concurrently using half of the processes for each spin channel.

If the system is periodically repeated in space, according to the Bloch theorem, the KS eigenproblem has an additional
index k :

Hkck = εkSkck. (3.2)

In practice, it is sufficient to study k within a single primitive unit cell in the reciprocal space, usually the first Brillouin
zone. The physical quantities, e.g. the electron density, are represented by Brillouin zone integrals:

n(r) =

Nbasis∑
l=1

∫
BZ

flkψ
∗
lk(r)ψlk(r)d3k, (3.3)

which is approximated by using a finite mesh of k -points in the first Brillouin zone:

n(r) ≈
Nkpt∑
n=1

wn

Nbasis∑
l=1

flkn
ψ∗
lkn

(r)ψlkn
(r). (3.4)
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Here, wn is the weight of the nth k -point; Nkpt is the number of k -points. The weights of all k -points add up to 1. Ob-
viously, a denser grid of k -points leads to a higher accuracy with higher computational cost. The Hamilton and overlap
matrices for multiple k -points are block-diagonal, such that each block on the diagonal corresponds to an eigenproblem
of one k -point. These eigenproblems can be solved separately.

The handling of spin-polarized case and periodic case in ELSI are more or less equivalent. The problems, either from
two spin channels, or from multiple k -points, are treated as equivalent “unit tasks”. If the chosen solver is an eigensolver
(ELPA or SLEPc-SIPs), all the unit tasks are solved independently, returning separate eigensolutions to the KS-DFT
code. The KS-DFT code can then assemble the pieces of the solutions and construct the electron density. When com-
puting density matrices, the unit tasks are coupled together by the normalization condition of the number of electrons:

Nelectron =

Nkpt∑
n=1

Nspin∑
m=1

Nbasis∑
l=1

wnflmn, (3.5)

where Nkpt, Nspin, and Nbasis are the number of k -points, the number of spin channels, and the number of basis func-
tions, respectively. wn is again the weight of the nth k -point. flmn is the occupation number of the lth state in the
mth spin channel and the nth k -point. To determine the occupation numbers, the eigenvalues at each unit task need to
be collected across all the tasks. With the correct occupation numbers, density matrices can be computed by 1.8 and
returned to the KS-DFT code.

If the PEXSI solver is chosen, the pole expansion in 1.18 is performed for all the unit tasks in parallel, with the same trial
chemical potential µ. The resulting number of electrons needs to be determined in order to refine the chemical potential.
The chemical potential yielding the correct number of electrons is used to construct the density matrices on the unit tasks.

If the OMM solver is chosen, the orbital minimization in 1.16 is performed for all the unit tasks to obtain density ma-
trices. Again, OMM cannot handle systems with fractional occupation numbers.

To set up the ELSI interface for a calculation with more than one k -point and/or more than one spin channel, the
elsi set kpoint and/or elsi set spin subroutines are called to pass the required information into ELSI. The MPI commu-
nicator for each unit task is passed into ELSI by calling elsi set mpi. In addition, a global MPI communicator for all
tasks is passed into ELSI by calling elsi set mpi global. Note that the current ELSI interface only supports the case
where the eigenproblems for all the k -points and spin channels are fully parallelized, i.e., there is no MPI task handling
more than one k -point and/or more than one spin channel. Another limitation is that the two spin channels are always
coupled by the normalization condition 3.5, with a uniform chemical potential for the two channels. The distribution of
electrons among the two channels, and thus the net spin moment of the system, is solely determined by 3.5. Future work
will enable calculations with a fixed, user-specified spin moment.

elsi set kpoint(handle, n kpt, i kpt, weight)

Argument Data Type in/out Explanation
handle type(elsi handle) inout Handle to ELSI.
n kpt integer in Total number of k -points.
i kpt integer in Index of the k -point handled by this MPI task.
weight integer in Weight of the k -point handled by this MPI task.

elsi set spin(handle, n spin, i spin)

Argument Data Type in/out Explanation
handle type(elsi handle) inout Handle to ELSI.
n spin integer in Total number of spin channels.
i spin integer in Index of the spin channel handled by this MPI task.

elsi set mpi global(handle, mpi comm global)

Argument Data Type in/out Explanation
handle type(elsi handle) inout Handle to ELSI.
mpi comm global integer in Global MPI communicator used for communications among

all k -points and spin channels.
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3.2.5 Finalizing ELSI

When an ELSI instance is no longer needed, its associated handle should be cleaned up by calling elsi finalize.

elsi finalize(handle)

Argument Data Type in/out Explanation
handle type(elsi handle) inout Handle to ELSI.

3.3 Solving Eigenvalues and Eigenvectors

The following subroutines return all the eigenvalues and a subset of eigenvectors of the provided H and S matrices. Only
eigensolvers may be selected as the desired solver when using these subroutines.

elsi ev real(handle, ham, ovlp, eval, evec)

Argument Data Type in/out Explanation
handle type(elsi handle) inout Handle to ELSI.
ham real double, rank-2 array inout Real Hamiltonian matrix in 2D block-cyclic dense for-

mat. See remark 1.
ovlp real double, rank-2 array inout Real overlap matrix (or its Cholesky factor) in 2D block-

cyclic dense format. See remark 1.
eval real double, rank-1 array inout Eigenvalues. See remark 2.
evec real double, rank-2 array out Real eigenvectors in 2D block-cyclic dense format. See

remark 3.

elsi ev complex(handle, ham, ovlp, eval, evec)

Argument Data Type in/out Explanation
handle type(elsi handle) inout Handle to ELSI.
ham complex double, rank-2 array inout Complex Hamiltonian matrix in 2D block-cyclic dense

format. See remark 1.
ovlp complex double, rank-2 array inout Complex overlap matrix (or its Cholesky factor) in 2D

block-cyclic dense format. See remark 1.
eval real double, rank-1 array inout Eigenvalues. See remark 2.
evec complex double, rank-2 array out Complex eigenvectors in 2D block-cyclic dense format.

See remark 3.

elsi ev real sparse(handle, ham, ovlp, eval, evec)

Argument Data Type in/out Explanation
handle type(elsi handle) inout Handle to ELSI.
ham real double, rank-1 array inout Real Hamiltonian matrix in 1D block or block-cyclic

CSC sparse format.
ovlp real double, rank-1 array inout Real overlap matrix in 1D block or block-cyclic CSC

sparse format.
eval real double, rank-1 array inout Eigenvalues. See remark 2.
evec real double, rank-2 array out Real eigenvectors in 2D block-cyclic dense format. See

remark 3.
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elsi ev complex sparse(handle, ham, ovlp, eval, evec)

Argument Data Type in/out Explanation
handle type(elsi handle) inout Handle to ELSI.
ham complex double, rank-1 array inout Complex Hamiltonian matrix in 1D block or block-cyclic

CSC sparse format.
ovlp complex double, rank-1 array inout Complex overlap matrix in 1D block or block-cyclic CSC

sparse format.
eval real double, rank-1 array inout Eigenvalues. See remark 2.
evec complex double, rank-2 array out Complex eigenvectors in 2D block-cyclic dense format.

See remark 3.

Remarks

1) The Hamiltonian matrix will be destroyed by ELPA during computation. ELPA will overwrite the overlap matrix
in its initial execution with the Cholesky factor, which will be reused by subsequent subroutine calls to elsi ev real or
elsi ev complex. When using elsi ev real sparse, the Cholesky factor (which is not sparse) is stored internally in the
BLACS DENSE format. Starting from the second call to elsi ev real sparse, the input sparse overlap matrix will not be
referenced.

2) When using the ELPA solver, elsi ev real, elsi ev complex, elsi ev real sparse, and elsi ev complex sparse always com-
pute all the eigenvalues, regardless of the choice of n state specified in elsi init. The dimension of eval thus should always
be n basis.

3) When using the ELPA solver, elsi ev real, elsi ev complex, elsi ev real sparse, and elsi ev complex sparse compute a
subset of all eigenvectors. The number of eigenvectors to compute is specified by the keyword n state in elsi init. How-
ever, the local eigenvectors array should always be initialized to correspond to a global array of size n basis × n basis,
whose extra part is used as working space in ELPA. Note that when using elsi ev real sparse and elsi ev complex sparse,
the eigenvectors are returned in a dense format (BLACS DENSE), as they are in general not sparse.

3.4 Computing Density Matrices

The following subroutines return the density matrix computed from the provided H and S matrices, as well as the energy
corresponding to the occupied eigenstates. When the selected solver is ELPA, ELSI will internally construct the density
matrix using the eigenvalues and eigenvectors returned by ELPA.

elsi dm real(handle, ham, ovlp, dm, bs energy)

Argument Data Type in/out Explanation
handle type(elsi handle) inout Handle to ELSI.
ham real double, rank-2 array inout Real Hamiltonian matrix in 2D block-cyclic dense for-

mat.
ovlp real double, rank-2 array inout Real overlap matrix (or Cholesky factor) in 2D block-

cyclic dense format. See remark 1.
dm real double, rank-2 array out Real density matrix in 2D block-cyclic dense format.
energy real double out Energy corresponding to the occupied eigenstates

(“band structure energy”).
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elsi dm complex(handle, ham, ovlp, dm, energy)

Argument Data Type in/out Explanation
handle type(elsi handle) inout Handle to ELSI.
ham complex double, rank-2 array inout Complex Hamiltonian matrix in 2D block-cyclic dense

format.
ovlp complex double, rank-2 array inout Complex overlap matrix (or its Cholesky factor) in 2D

block-cyclic dense format. See remark 1.
dm complex double, rank-2 array out Complex density matrix in 2D block-cyclic dense for-

mat.
energy real double out Energy corresponding to the occupied eigenstates

(“band structure energy”).

elsi dm real sparse(handle, ham, ovlp, dm, energy)

Argument Data Type in/out Explanation
handle type(elsi handle) inout Handle to ELSI.
ham real double, rank-1 array inout Non-zero values of the real Hamiltonian matrix in 1D

block or block-cyclic CSC format.
ovlp real double, rank-1 array inout Non-zero values of the real overlap matrix in 1D block

or block-cyclic CSC format.
dm real double, rank-1 array out Non-zero values of the real density matrix in 1D block

or block-cyclic CSC format.
energy real double out Energy corresponding to the occupied eigenstates

(“band structure energy”).

elsi dm complex sparse(handle, ham, ovlp, dm, energy)

Argument Data Type in/out Explanation
handle type(elsi handle) inout Handle to ELSI.
ham complex double, rank-1 array inout Non-zero values of the complex Hamiltonian matrix in

1D block or block-cyclic CSC format.
ovlp complex double, rank-1 array inout Non-zero values of the complex overlap matrix in 1D

block or block-cyclic CSC format.
dm complex double, rank-1 array out Non-zero values of the complex density matrix in 1D

block or block-cyclic CSC format.
energy real double out Energy corresponding to the occupied eigenstates

(“band structure energy”).

Remarks

1) If the chosen solver is ELPA or libOMM, the Hamiltonian matrix will be destroyed during the computation. ELPA
will overwrite the overlap matrix in its initial execution with the Cholesky factor, which will be reused by subsequent
calls to elsi dm real.

3.5 Customizing ELSI

In ELSI, reasonable default values have been provided for a number of parameters used in the ELSI interface the the
supported solvers. However, no set of default parameters can adequately cover all use cases. Parameters that can be
overridden are described in the following subsections.
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3.5.1 Customizing the ELSI Interface

In all the subroutines listed below, the first argument (input and output) is an elsi handle. The second argument (input)
of each subroutine is the name of parameter to set.

Note that logical variables are not used in all ELSI API. Integers are used to represent logical, with 0 being false and
any positive integer being true.

elsi set output(handle, out level)

elsi set output log(handle, out log)

elsi set write unit(handle, write unit)

elsi set unit ovlp(handle, unit ovlp)

elsi set zero def(handle, zero def)

elsi set sing check(handle, sing check)

elsi set sing tol(handle, sing tol)

elsi set sing stop(handle, sing stop)

elsi set mu broaden scheme(handle, mu broaden scheme)

elsi set mu mp order(handle, mu mp order)

elsi set mu broaden width(handle, mu broaden width)

elsi set mu tol(handle, mu tol)

Argument Data Type Default Explanation
out level integer 0 Output level of the ELSI interface. 0: no output. 1: standard

ELSI output. 2: 1 + info from the solvers. 3: 2 + additional
debug info.

out log integer 0 If not 0, a separate log file in JSON format will be written out.
write unit integer 6 The unit used in ELSI to write out information.
unit ovlp integer 0 If not 0, the overlap matrix will be treated as an identity (unit)

matrix in ELSI and the solvers. See remark 1.
zero def real double 10−15 When converting a matrix from dense to sparse format, values

below this threshold will be discarded.
sing check integer 0 If not 0, the singularity check of the overlap matrix will be per-

formed. See remark 2.
sing tol real double 10−5 Eigenfunctions of the overlap matrix with eigenvalues smaller than

this threshold will be removed to avoid ill-conditioning. See re-
mark 1.

sing stop integer 0 If not 0, the code always stops if the overlap matrix is detected to
be singular. See remark 1.

mu broaden scheme integer 0 The broadening scheme employed to compute the occupation
numbers and the Fermi level. 0: Gaussian. 1: Fermi-Dirac. 2:
Methfessel-Paxton. 4: Marzari-Vanderbilt.

mu mp order integer 0 The order of the Methfessel-Paxton broadening scheme. No effect
if Methfessel-Paxton is not the chosen broadening scheme.

mu broaden width real double 0.01 The broadening width employed to compute the occupation num-
bers and the Fermi level. See remark 3.

mu tol real double 10−13 The convergence tolerance (in terms of the absolute error in elec-
tron count) of the bisection algorithm employed to compute the
occupation numbers and the Fermi level.

Remarks
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1) If the input overlap matrix is an identity matrix, all settings related to the singularity (ill-conditioning) check take
no effect.

2) If the singularity check is not disabled, in the first iteration of each SCF cycle, possible singularity of the overlap ma-
trix is checked by computing all its eigenvalues. If there is any eigenvalue smaller than sing tol, the matrix is considered
to be singular.

3) In all supported broadening schemes, there is a term (ε− EF)/W in the distribution function, where ε is the energy
of an eigenstate, and EF is the Fermi level. The broadening width parameter should be set to W , in the unit of ε and EF.

3.5.2 Customizing the ELPA Solver

elsi set elpa solver(handle, elpa solver)

elsi set elpa gpu(handle, use gpu)

elsi set elpa gpu kernels(handle, use gpu kernels)

Argument Data Type Default Explanation
elpa solver integer 2 1: ELPA 1-stage solver. 2: ELPA 2-stage solver. The 2-stage

solver is usually faster and more scalable.
use gpu integer 0 If not 0, try to enable GPU-acceleration in ELPA. See remark 1.
use gpu kernels integer 0 If not 0, try to enable GPU-acceleration and GPU kernels in

ELPA. See remark 1.

Remarks

1) use gpu and use gpu kernels: If GPU-acceleration is available in an externally compiled ELPA library, it may be
enabled by setting use gpu to a non-zero value. use gpu has no effect if GPU-acceleration is not available, which is
the case if the internal version of ELPA is used, or if an external ELPA has not been complied with GPU support.
Note that by setting use gpu, the GPU kernels for eigenvector back-transformation will not be used. To enable the GPU
kernels, use gpu kernels should be set to a non-zero value. Again, this takes no effect if the GPU kernels are not available.

3.5.3 Customizing the libOMM Solver

elsi set omm flavor(handle, omm flavor)

elsi set omm n elpa(handle, omm n elpa)

elsi set omm tol(handle, omm tol)

Argument Data Type Default Explanation
omm flavor integer 0 Method to perform OMM minimization. See remark 1.
omm n elpa integer 6 Number of ELPA steps before libOMM. See remark 2.
omm tol real double 10−12 Convergence tolerance of orbital minimization. See remark 3.

Remarks

1) omm flavor: Allowed choices are 0 for basic minimization of a generalized eigenproblem and 2 for a Cholesky fac-
torization of the overlap matrix transforming the generalized eigenproblem to the standard form. Usually 2 (Cholesky)
leads to a faster convergence of the OMM energy functional minimization, at the price of transforming the eigenproblem.
When using sufficiently many steps of ELPA to stabilize the SCF cycle, 0 (basic) is probably a better choice to finish
the remaining SCF cycle. See also remark 2 below.

2) omm n elpa: It has been demonstrated that OMM is optimal at later stages of an SCF cycle where the electronic
structure is closer to its expected local minimum, requiring only one CG iteration to converge the minimization of
the OMM energy functional. Accordingly, it is recommended to use ELPA initially, then switching to libOMM after
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omm n elpa SCF steps.

3) omm tol: A large minimization tolerance of course leads to a faster convergence, however unavoidably with a lower
accuracy. omm tol should be tested and chosen to balance the desired accuracy and computation time of the calling code.

3.5.4 Customizing the PEXSI Solver

elsi set pexsi n pole(handle, pexsi n pole)

elsi set pexsi n mu(handle, pexsi n mu)

elsi set pexsi np per pole(handle, pexsi np per pole)

elsi set pexsi np symbo(handle, pexsi np symbo)

elsi set pexsi ordering(handle, pexsi ordering method)

elsi set pexsi temp(handle, pexsi temp)

elsi set pexsi gap(handle, pexsi gap)

elsi set pexsi delta e(handle, pexsi delta e)

elsi set pexsi mu min(handle, pexsi mu min)

elsi set pexsi mu max(handle, pexsi mu max)

elsi set pexsi inertia tol(handle, pexsi inertia tol)

Argument Data Type Default Explanation
pexsi n pole integer 20 Number of poles used by PEXSI. See remark 1.
pexsi n mu integer 2 Number of mu points used by PEXSI. See remark 1.
pexsi np per pole integer - Number of MPI tasks assigned to each mu point. See remark 2.
pexsi np symbo integer 1 Number of MPI tasks for symbolic factorization. See remark 3.
pexsi ordering integer 0 Matrix reordering method. See remark 3.
pexsi temp real double 0.002 Temperature. See remark 4.
pexsi gap real double 0.0 Spectral gap. See remark 5.
pexsi delta e real double 10.0 Spectral radius. See remark 6.
pexsi mu min real double -10.0 Minimum value of mu. See remark 7.
pexsi mu max real double 10.0 Maximum value of mu. See remark 7.
pexsi inertia tol real double 0.05 Stopping criterion of inertia counting. See remark 7.

Remarks

1) In PEXSI, 20 poles are usually sufficient to get an accuracy that is comparable with the result obtained from diago-
nalization. The chemical potential is determined by performing Fermi operator expansion at several chemical potential
values (referred to as “points” by PEXSI developers) in an SCF step, then interpolating the results at all points to the
final answer. The pexsi n mu parameter controls the number of chemical potential “points” to be evaluated. 2 points
followed by a simple linear interpolation often yield reasonable results.

In short, we recommend pexsi n pole = 20 and pexsi n mu = 2.

2) pexsi np per pole: PEXSI has, by construction, a 3-level parallelism: the 1st level independently handles all the poles
in parallel; within each pole, the 2nd level evaluates the Fermi operator at all the chemical potential points in parallel;
finally, within each point, parallel selected inversion is performed as the 3rd level. The value of pexsi np per pole is
the number of MPI tasks assigned to a single chemical potential point, for the parallel selected inversion at that point.
Ideally, the total number of MPI tasks should be pexsi np per pole × pexsi n mu × pexsi n pole, i.e., all the three levels
of parallelism are fully exploited. In case that this is not feasible, PEXSI can also process the poles in serial, whereas
all the chemical potential points must be evaluated simultaneously. The user should make sure that the total number of
MPI tasks is divisible by the product of the number of MPI tasks per pole and the number of points. The code will stop
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if this requirement is not fulfilled.

When using the BLACS DENSE or SIESTA CSC matrix formats, pexsi np per pole is automatically determined to bal-
ance the three levels of parallelism in PEXSI. Input and output matrices should be distributed across all MPI tasks in
either a 2D block-cyclic distribution (BLACS DENSE) or a 1D block-cyclic distribution (SIESTA CSC).

Note that when using the PEXSI CSC matrix format together with the PEXSI solver, input and output matrices should
be distributed among the first pexsi np per pole MPI tasks (not all the MPI tasks) in a 1D block distribution. The
block size of the distribution must be floor(N basis/N procs), where floor(x) is the greatest integer less than or equal to
x, N basis and N procs are the number of basis functions and the number of MPI tasks, respectively.

when using the PEXSI CSC matrix format with the ELPA, libOMM, or SLEPc-SIPs solver, input and output matrices
should be distributed across all the MPI tasks in a 1D block distribution. Again, the block size of the distribution must
be floor(N basis/N procs).

3) pexsi np symbo: The number of MPI tasks used for symbolic factorization cannot be too large. Otherwise, the
symbolic factorization may fail. The default number of MPI tasks for symbolic factorization is set to 1 for safety. It is
worth testing and increasing this number. The default matrix reordering method in PEXSI is set to parallel ordering
(0). This may also fail in rare cases, where the sequential ordering (1) is worth trying.

4) pexsi temp: This value corresponds to the 1/kBT term (not T ) in the Fermi-Dirac distribution function.

5) pexsi gap: The PEXSI method does not require a gap. If an estimate of the gap is unavailable, the default value
usually works.

6) pexsi delta e: This is the spectral width of the eigensystem, i.e., the difference between the largest and smallest
eigenvalues. Use the default value if no access to a better estimate.

7) The chemical potential determination in PEXSI relies on inertia counting to narrow down the chemical potential
searching interval in the first few SCF steps. The pexsi inertia tol parameter controls the stopping criterion of the
inertia counting procedure. With a small interval obtained from the inertia counting step, PEXSI then selects a number
of points in this interval to perform Fermi operator calculations, based on which a final chemical potential will be deter-
mined. The trick of this algorithm is that the chemical potential interval of the current SCF step can be used as a descent
guess in the next SCF step. Therefore, the mechanism to choose input values for pexsi mu min and pexsi mu max is
two-fold. For the first SCF iteration, they should be set to safe values that guarantee the true chemical potential lies
in this interval. Then, for the nth SCF step, pexsi mu min should be set to (mun-1min + ∆Vmin), pexsi mu max should be
set to (mun-1max + ∆Vmax). Here, mun-1min and mun-1max are the lower bound and the upper bound of the chemical potential
that are determined by PEXSI in the (n-1)th SCF step. They can be retrieved by calling elsi get pexsi mu min and
elsi get pexsi mu max, respectively (see 3.6.2. Suppose the effective potential (Hartree potential, exchange-correlation
potential, and external potential) is stored in an array V , whose dimension is the number of grid points. From one SCF
iteration to the next, ∆V denotes the potential change, and ∆Vmin and ∆Vmax are the minimum and maximum values
in the array ∆V , respectively. The whole process is summarized in the following pseudo-code.
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mu min = -10.0
mu max = 10.0
∆Vmin = 0.0
∆Vmax = 0.0

while SCF not converged do

Update Hamiltonian

elsi set pexsi mu min(elsi h, mu min + ∆Vmin)
elsi set pexsi mu max(elsi h, mu max + ∆Vmax)

elsi dm {real|complex}(elsi h, ham, ovlp, dm, bs energy)

elsi get pexsi mu min(elsi h, mu min)
elsi get pexsi mu max(elsi h, mu max)

Update electron density
Update potential

∆Vmin = minval(Vnew - Vold)
∆Vmax = maxval(Vnew - Vold)

Check SCF convergence
end

3.5.5 Customizing the SLEPc-SIPs Solver

elsi set sips interval(handle, lower, upper)

elsi set sips n elpa(handle, n elpa)

elsi set sips n slice(handle, n slice)

Argument Data Type Default Explanation
lower real double -2.0 Lower bound of eigenspectrum. See remark 1.
upper real double 2.0 Upper bound of eigenspectrum. See remark 1.
n elpa integer 0 Number of ELPA steps before SLEPc-SIPs. See remark 2.
n slice integer 1 Number of slices. See remark 3.

Remarks

1) lower and upper: SLEPc-SIPs relies on some inertia counting steps to estimate the lower and upper bounds of the spec-
trum. Only eigenvalues within this interval, and their associated eigenvectors, will be solved. The inertia-counting-based
eigenvalue searching starts from the interval determined by lower and upper. Depending on the results of inertia count-
ing, this interval may expand or shrink to make sure that the 1st to the n stateth eigenvalues are all within this interval.
If a good estimate of the lower and upper bounds of the eigenspectrum is available, it should be set by elsi set sips interval.

2) n elpa: The performance of SLEPc-SIPs mainly depends on the load balance across slices. Optimal performance is
expected if the desired eigenvalues are evenly distributed across slices. In an SCF calculation, eigenvalues obtained in the
current SCF step can be used as an approximated distribution of eigenvalues in the next SCF step. This approximation
should become better as the SCF cycle approaches its convergence. On the other hand, at the beginning of an SCF
cycle, the load balance is only coarsely checked by inertia calculations. Using the direct eigensolver ELPA in the first
n elpa SCF steps can circumvent the load imbalance of spectrum slicing in the initial SCF steps.
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3) n slice: SLEPc-SIPs partitions the eigenspectrum into slices and solves the slices in parallel. The n slice parameter
controls the number of slices to use in SLEPc-SIPs. The default value, 1, should always work, but by no means leads
to the optimal performance of the solver. There are some general rules to set this parameter. Firstly, as a requirement
of the SLEPc library, the total number of MPI tasks must by divisible by n slice. Secondly, setting n slice to be equal
to the number of computing nodes (not MPI tasks) usually yields better performance, as the communication between
nodes is minimized in this case. The optimal value of n slice depends on the actual problem as well as the computing
hardware.

3.6 Getting Additional Results from ELSI

In 3.3 and 3.4, the interfaces to compute and return the eigensolutions and the density matrices have been introduced.
Internally, ELSI and the solvers perform additional calculations whose results may only be useful at a certain stage of
an SCF calculation. One example is the energy-weighted density matrix that is employed to evaluate the Pulay forces
during a geometry optimization calculation. The subroutines introduced in the following subsections are used to retrieve
such additional results from ELSI.

3.6.1 Getting Results from the ELSI Interface

In all the subroutines listed below, the first argument (input and output) is an elsi handle. The second argument
(output) of each subroutine is the name of parameter to get.

elsi get initialized(handle, handle init)

elsi get n sing(handle, n sing)

elsi get mu(handle, mu)

elsi get entropy(handle, ts)

elsi get edm real(handle, edm real)

elsi get edm complex(handle, edm complex)

elsi get edm real sparse(handle, edm real sparse)

elsi get edm complex sparse(handle, edm complex sparse)

Argument Data Type Explanation
handle init integer 0 if the ELSI handle has not been initialized; 1 if initialized.
n sing integer Number of eigenvalues of the overlap matrix that are

smaller than the singularity tolerance. See 3.5.1.
mu real double Chemical potential. See remark 1.
ts real double Entropy. See remark 1.
edm real real double, rank-2 array Real energy-weighted density matrix in 2D block-cyclic

dense format. See remark 2.
edm complex complex double, rank-2 array Complex energy-weighted density matrix in 2D block-cyclic

dense format. See remark 2.
edm real sparse real double, rank-1 array Non-zero values of the real density matrix in 1D block CSC

format. See remark 2.
edm complex sparse complex double, rank-1 array Non-zero values of the complex density matrix in 1D block

CSC format. See remark 2.

Remarks

1) In ELSI, the chemical potential will only be available if one of the density matrix solver interfaces has been called,
with either ELPA or PEXSI being the chosen solver. The chemical potential can be retrieved by calling elsi get mu. The
entropy will only be available if one of the density matrix solver interfaces has been called with ELPA being the chosen
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solver. The user should avoid calling the subroutine when the chemical potential or the entropy is not ready.

2) In general, the energy-weighted density matrix is only needed in a late stage of an SCF cycle to evaluate forces.
It is, therefore, not calculated when any of the density matrix solver interface is called. When the energy-weighted
density matrix is actually needed, it can be requested by calling the elsi get edm subroutines. Note that these sub-
routines all have the requirement that the corresponding elsi dm subroutine must have been invoked. For instance,
elsi get edm real sparse only makes sense if elsi dm real sparse has been successfully executed.

3.6.2 Getting Results from the PEXSI Solver

elsi get pexsi mu min(handle, pexsi mu min)

elsi get pexsi mu max(handle, pexsi mu max)

Argument Data Type Explanation
pexsi mu min real double Minimum value of mu. See remark 1.
pexsi mu max real double Maximum value of mu. See remark 1.

Remarks

1) Please refer to the 7th remark in 3.5.4 for the chemical potential determination algorithm in PEXSI and ELSI.

3.7 Parallel Matrix I/O

To test the solvers in ELSI, it is convenient to use matrices generated from actual electronic structure calculations.
There exist a number of libraries invented for high-performance parallel I/O that are particularly capable of reading and
writing a large amount of data with hierarchical structures and complex metadata. However, the I/O task in ELSI is very
simple in terms of the complexity of the data to manipulate. The data structure is simply arrays that represent matrices,
with a few integers to define the dimension of the matrices. In order to circumvent the unavoidable development and
performance overhead associated with a high level I/O library, the parallel I/O functionality defined in the MPI standard
is directly used to read and write matrices in ELSI.

When ELSI runs in parallel with multiple MPI tasks, the matrices are distributed across tasks. The choice of writing
the distributed matrices into Nprocs separate files, where Nprocs is the number of MPI tasks, is not promising due to the
difficulty of managing and post-processing a large number of files, especially with a different number of MPI tasks. The
implementation of matrix I/O in ELSI adopts collective MPI I/O routines to write data to (read data from) a single
binary file, as if the data was gathered onto a single MPI task then written to one file (read from one file by one MPI
task then scattered to all tasks). The optimal I/O performance, both with MPI I/O and in general, is often obtained by
making large and contiguous requests to access the file system, rather than small, non-contiguous, or random requests.
Therefore, before being written to file, matrices are always redistributed to a 1D block distribution. This guarantees
that each MPI task writes a contiguous trunk of data to a contiguous piece of file. Similarly, matrices read from file are
in a 1D block distribution, and can be redistributed automatically if needed.

A matrix is always stored in the CSC format in an ELSI matrix file. A dense matrix is automatically converted to the
CSC format before writing to file, and can be converted back after reading from file.

Next, we present the API for parallel matrix I/O.

3.7.1 Setting Up Matrix I/O

An elsi rw handle must be initialized via the elsi init rw subroutine before any other matrix I/O subroutine may be
called. This elsi rw handle is subsequently passed to all other matrix I/O subroutine calls.
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elsi init rw(handle, task, parallel mode, n basis, n electron)

Argument Data Type in/out Explanation
handle type(elsi rw handle) out Handle to matrix I/O instance.
task integer in Matrix I/O task to perform. Accepted values are: 0

(READ MATRIX) and 1(WRITE MATRIX).
parallel mode integer in Parallelization mode. The only accepted value is 1

(MULTI PROC) for now.
n electron real double in Number of electrons. See remark 1.
n basis integer in Number of basis functions, i.e. global size of matrix.

Remarks

1) n electron: Many matrices written out with ELSI matrix I/O are from real electronic structure calculations. Having
the information of the number of electrons available makes the matrix file useful for testing density matrix solvers such
as PEXSI. Therefore, it is recommended to set the correct number of electrons when initializing an matrix I/O handle,
although setting it to an arbitrary number will not affect the matrix I/O operation.

2) n basis: This can be set to an arbitrary value if task is 0 (READ MATRIX). Its value will be read from file when
calling elsi read mat dim or elsi read mat dim sparse.

The MPI communicator which encloses the MPI tasks to perform the matrix I/O operation needs to be passed into ELSI
via the elsi set rw mpi subroutine.

elsi set rw mpi(handle, mpi comm)

Argument Data Type in/out Explanation
handle type(elsi rw handle) inout Handle to matrix I/O instance.
mpi comm integer in MPI communicator.

When reading or writing a dense matrix, BLACS parameters are passed into ELSI via the elsi set rw blacs subroutine.

elsi set rw blacs(handle, blacs ctxt, block size)

Argument Data Type in/out Explanation
handle type(elsi rw handle) inout Handle to matrix I/O instance.
blacs ctxt integer in BLACS context.
block size integer in Block size of the 2D block-cyclic distribution, specifying

both row and column directions.

When writing a sparse matrix, its dimensions are passed into ELSI via the elsi set rw csc subroutine. The only sparse
matrix format currently supported by ELSI matrix I/O is the PEXSI CSC format. When reading a sparse matrix, there
is no need to call this subroutine. The relevant parameters will be read from file when calling elsi read mat dim or
elsi read mat dim sparse.

elsi set rw csc(handle, global nnz, local nnz, local col)

Argument Data Type in/out Explanation
handle type(elsi rw handle) inout Handle to matrix I/O instance.
global nnz integer in Global number of non-zeros.
local nnz integer in Local number of non-zeros.
local col integer in Local number of matrix columns.

When a matrix I/O instance is no longer needed, its associated handle should be cleaned up by calling elsi finalize rw.

elsi finalize rw(handle)

Argument Data Type in/out Explanation
handle type(elsi rw handle) inout Handle to matrix I/O instance.
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3.7.2 Writing Matrices

The following two subroutines write a dense matrix to file. Before writing a dense matrix, MPI and BLACS should be
set up properly using elsi set rw mpi and elsi set rw blacs.

elsi write mat real(handle, filename, mat)

Argument Data Type in/out Explanation
handle type(elsi rw handle) in Handle to matrix I/O instance.
filename string in Name of file to write.
mat real double, rank-2 array in Local matrix in 2D block-cyclic dense format.

elsi write mat complex(handle, filename, mat)

Argument Data Type in/out Explanation
handle type(elsi rw handle) in Handle to matrix I/O instance.
filename string in Name of file to write.
mat complex double, rank-2 array in Local matrix in 2D block-cyclic dense format.

The following two subroutines write a sparse matrix to file. Before writing a sparse matrix, MPI and CSC matrix format
should be set up properly using elsi set rw mpi and elsi set rw csc.

elsi write mat real sparse(handle, filename, row idx, col ptr, mat)

Argument Data Type in/out Explanation
handle type(elsi rw handle) in Handle to matrix I/O instance.
filename string in Name of file to write.
row idx integer, rank-1 array in Local row index array.
col ptr integer, rank-1 array in Local column pointer array.
mat real double, rank-1 array in Local non-zero values in 1D block CSC format.

elsi write mat complex sparse(handle, filename, row idx, col ptr, mat)

Argument Data Type in/out Explanation
handle type(elsi rw handle) in Handle to matrix I/O instance.
filename string in Name of file to write.
row idx integer, rank-1 array in Local row index array.
col ptr integer, rank-1 array in Local column pointer array.
mat complex double, rank-1 array in Local non-zero values in 1D block CSC format.

When writing a dense matrix to file, values smaller than a predefined threshold will be discarded. The default value of
this threshold is 10−15. It can be overridden via elsi set rw zero def.

elsi set rw zero def(handle, zero def)

Argument Data Type in/out Explanation
handle type(elsi rw handle) inout Handle to matrix I/O instance.
zero def real double in When writing a dense matrix to file, values below this

threshold will be discarded.

An array of eight user-defined integers can be optionally set up via elsi set rw header. This array will be attached
to the matrix file written out by the above subroutines. When reading a matrix file, this array may be retrieved via
elsi get rw header.

elsi set rw header(handle, header)

Argument Data Type in/out Explanation
handle type(elsi rw handle) inout Handle to matrix I/O instance.
header integer, rank-1 array in An array of eight integers.
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3.7.3 Reading Matrices

The following subroutines read a dense or sparse matrix from file. While writing a matrix to file can be done in one
step, it is easier to read a matrix from file in two steps, i.e., first read the dimension of the matrix and allocate memory
accordingly, then read the actual data of the matrix.

The following three subroutines read a dense matrix from file. Before reading a dense matrix, MPI and BLACS should be
set up properly using elsi set rw mpi and elsi set rw blacs. elsi read mat dim is used to read the dimension of a matrix,
including the number of electrons in the physical system (for testing purpose), the global size of the matrix, and the
local size of the matrix. Memory needs to be allocated according to the return values of local row and local col. Then
elsi read mat real or elsi read mat complex may be called to read a real or complex matrix, respectively.

elsi read mat dim(handle, filename, n electron, n basis, local row, local col)

Argument Data Type in/out Explanation
handle type(elsi rw handle) inout Handle to matrix I/O instance.
filename string in Name of file to read.
n electron real double out Number of electrons.
n basis integer out Number of basis functions, i.e. global size of matrix.
local row integer out Local number of matrix rows.
local col integer out Local number of matrix columns.

elsi read mat real(handle, filename, mat)

Argument Data Type in/out Explanation
handle type(elsi rw handle) inout Handle to matrix I/O instance.
filename string in Name of file to read.
mat real double, rank-2 array out Local matrix in 2D block-cyclic distribution.

elsi read mat complex(handle, filename, mat)

Argument Data Type in/out Explanation
handle type(elsi rw handle) inout Handle to matrix I/O instance.
filename string in Name of file to read.
mat complex double, rank-2 array out Local matrix in 2D block-cyclic distribution.

The following three subroutines read a sparse matrix from file. Before reading a sparse matrix, MPI should be set up
properly using elsi set rw mpi. elsi read mat dim sparse is used to read the dimension of a matrix, including the number
of electrons in the physical system (for testing purpose), the global size of the matrix, and the local size of the matrix.
Memory needs to be allocated according to the return values of local nnz and local col. Then elsi read mat real sparse
or elsi read mat complex sparse may be called to read a real or complex matrix, respectively.

elsi read mat dim sparse(handle, filename, n electron, n basis, global nnz, local nnz, local col)

Argument Data Type in/out Explanation
handle type(elsi rw handle) inout Handle to matrix I/O instance.
filename string in Name of file to read.
n electron real double out Number of electrons.
n basis integer out Number of basis functions, i.e. global size of matrix.
global nnz integer out Global number of non-zeros.
local nnz integer out Local number of non-zeros.
local col integer out Local number of matrix columns.
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elsi read mat real sparse(handle, filename, row idx, col ptr, mat)

Argument Data Type in/out Explanation
handle type(elsi rw handle) inout Handle to matrix I/O instance.
filename string in Name of file to read.
row idx integer, rank-1 array out Local row index array.
col ptr integer, rank-1 array out Local column pointer array.
mat real double, rank-1 array out Local non-zero values in 1D block CSC format.

elsi read mat complex sparse(handle, filename, row idx, col ptr, mat)

Argument Data Type in/out Explanation
handle type(elsi rw handle) inout Handle to matrix I/O instance.
filename string in Name of file to read.
row idx integer, rank-1 array out Local row index array.
col ptr integer, rank-1 array out Local column pointer array.
mat complex double, rank-1 array out Local non-zero values in 1D block CSC format.

An array of eight user-defined integers can be optionally set up via elsi set rw header. This array will be attached
to the matrix file written out by the above subroutines. When reading a matrix file, this array may be retrieved via
elsi get rw header.

elsi get rw header(handle, header)

Argument Data Type in/out Explanation
handle type(elsi rw handle) inout Handle to matrix I/O instance.
header integer, rank-1 array out An array of eight integers.

3.8 Demonstration Pseudo-Code

The typical workflow of ELSI within a KS-DFT code is demonstrated by the following pseudo-code. The ELSI interface
routines and the operations to be performed by a KS-DFT code are marked with blue and red, respectively.

3.8.1 2D Block-Cyclic Distributed Dense Matrix + ELSI Eigensolver Interface

SCF initialize

elsi init(elsi h, ELPA, MULTI PROC, BLACS DENSE, n basis, n electron, n state)
elsi set mpi(elsi h, mpi comm)
elsi set blacs(elsi h, blacs ctxt, block size)

while SCF not converged do

Update Hamiltonian

elsi ev {real|complex}(elsi h, ham, ovlp, eval, evec)

Update electron density
Check SCF convergence

end

elsi finalize(elsi h)

33



3.8.2 1D Block Distributed CSC Sparse Matrix + ELSI Eigensolver Interface

SCF initialization

elsi init(elsi h, ELPA, MULTI PROC, PEXSI CSC, n basis, n electron, n state)
elsi set mpi(elsi h, mpi comm)
elsi set blacs(elsi h, blacs ctxt, block size)
elsi set csc(elsi h, global nnz, local nnz, local col, row idx, col ptr)

while SCF not converged do

Update Hamiltonian

elsi ev {real|complex} sparse(elsi h, ham, ovlp, eval, evec)

Update electron density
Check SCF convergence

end

elsi finalize(elsi h)

Remarks

1) The calculated eigenvectors are returned in the BLACS DENSE format, which is required to be properly set up.

3.8.3 1D Block-Cyclic Distributed CSC Sparse Matrix + ELSI Eigensolver Interface

SCF initialization

elsi init(elsi h, ELPA, MULTI PROC, SIESTA CSC, n basis, n electron, n state)
elsi set mpi(elsi h, mpi comm)
elsi set blacs(elsi h, blacs ctxt, block size)
elsi set csc(elsi h, global nnz, local nnz, local col, row idx, col ptr)
elsi set csc blk(elsi h, block size)

while SCF not converged do

Update Hamiltonian

elsi ev {real|complex} sparse(elsi h, ham, ovlp, eval, evec)

Update electron density
Check SCF convergence

end

elsi finalize(elsi h)

Remarks

1) The calculated eigenvectors are returned in the BLACS DENSE format, which is required to be properly set up.
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3.8.4 2D Block-Cyclic Distributed Dense Matrix + ELSI Density Matrix Interface

SCF initialization

elsi init(elsi h, LIBOMM, MULTI PROC, BLACS DENSE, n basis, n electron, n state)
elsi set mpi(elsi h, mpi comm)
elsi set blacs(elsi h, blacs ctxt, block size)

while SCF not converged do

Update Hamiltonian

elsi dm {real|complex}(elsi h, ham, ovlp, dm, bs energy)
elsi get edm {real|complex}(elsi h, edm)

Update electron density
Check SCF convergence

end

elsi finalize(elsi h)

3.8.5 1D Block Distributed CSC Sparse Matrix + ELSI Density Matrix Interface

SCF initialization

elsi init(elsi h, PEXSI, parallel mode, PEXSI CSC, n basis, n electron, n state)
elsi set mpi(elsi h, mpi comm)
elsi set csc(elsi h, global nnz, local nnz, local col, row idx, col ptr)

while SCF not converged do

Update Hamiltonian

elsi dm {real|complex} sparse(elsi h, ham, ovlp, dm, bs energy)
elsi get edm {real|complex} sparse(elsi h, edm)

Update electron density
Check SCF convergence

end

elsi finalize(elsi h)

Remarks

1) Refer to the 7th remark in 3.5.4 for the chemical potential determination algorithm in PEXSI.
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3.8.6 1D Block-Cyclic Distributed CSC Sparse Matrix + ELSI Density Matrix Interface

SCF initialization

elsi init(elsi h, PEXSI, parallel mode, SIESTA CSC, n basis, n electron, n state)
elsi set mpi(elsi h, mpi comm)
elsi set csc(elsi h, global nnz, local nnz, local col, row idx, col ptr)
elsi set csc blk(elsi h, block size)

while SCF not converged do

Update Hamiltonian

elsi dm {real|complex} sparse(elsi h, ham, ovlp, dm, bs energy)
elsi get edm {real|complex} sparse(elsi h, edm)

Update electron density
Check SCF convergence

end

elsi finalize(elsi h)

Remarks

1) Refer to the 7th remark in 3.5.4 for the chemical potential determination algorithm in PEXSI.

3.8.7 Multiple k-points Calculations

SCF initialization

elsi init(elsi h, ELPA, parallel mode, BLACS DENSE, n basis, n electron, n state)
elsi set mpi(elsi h, mpi comm)
elsi set blacs(elsi h, blacs ctxt, block size)

elsi set kpoint(elsi h, n kpt, i kpt, weight)
elsi set mpi global(elsi h, mpi comm global)

while SCF not converged do

Update Hamiltonian

elsi dm {real|complex}(elsi h, ham, ovlp, dm, bs energy)
elsi get edm {real|complex}(elsi h, edm)

Update electron density
Check SCF convergence

end

elsi finalize(elsi h)
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Remarks

1) When there are multiple k -points, other than setting up the k -points and a global MPI communicator, there is no
change in the way ELSI solver interfaces are called.

2) The KS-DFT code needs to assemble the real-space density from the density matrices returned for the k -points. The
returned band structure energy, however, is already summed over all k -points with respect to the weight of each k -point.
Refer to 3.2.4 for more information.

3) Calculations with two spin channels can be set up similarly.

3.9 C/C++ Interface

ELSI is written in Fortran, but many KS-DFT codes use C/C++. ELSI provides a C interface around the core For-
tran ELSI code, which can be called from a C or C++ program. Each C wrapper function corresponds to a Fortran
subroutine, where we have prefixed the original Fortran subroutine name with c for clarity and consistency. Argument
lists are identical to the associated native Fortran subroutine. For the complete definition of the C interface, the user is
encouraged to look at the elsi.h header file directly.
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License and Copyright

ELSI Interface software is licensed under the 3-clause BSD license:

Copyright (c) 2015-2018, the ELSI team. All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the
following conditions are met:

1) Redistributions of source code must retain the above copyright notice, this list of conditions and the following dis-
claimer.

2) Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the follow-
ing disclaimer in the documentation and/or other materials provided with the distribution.

3) Neither the name of the ”ELectronic Structure Infrastructure (ELSI)” project nor the names of its contributors
may be used to endorse or promote products derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS ”AS IS” AND ANY
EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT
SHALL COPYRIGHT HOLDER BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEM-
PLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUB-
STITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOW-
EVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

The source code of ELPA 2016.11.001 (LGPL3), libOMM (BSD2), PEXSI 1.0.1 (BSD3), SuperLU DIST 5.3.0 (BSD3),
and PT-SCOTCH 6.0.0 (CeCILL-C) are redistributed through this version of ELSI. Individual license of each library
can be found in the corresponding subfolder.
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