
nothing

ELSI Interface

v2.2.1

nothing

User’s Guide

The ELSI Team
nothing

http://elsi-interchange.org

March 2, 2019

http://elsi-interchange.org

Contents

1 Introduction 3

1.1 The Cubic Wall of Kohn-Sham Density-Functional Theory . 3

1.2 ELSI, the ELectronic Structure Infrastructure . 4

1.3 Kohn-Sham Solver Libraries Supported by ELSI . 5

1.3.1 ELPA . 5

1.3.2 libOMM . 6

1.3.3 PEXSI . 6

1.3.4 SLEPc-SIPs . 6

1.3.5 NTPoly . 7

1.4 Citing ELSI . 7

1.5 Acknowledgments . 7

2 Installation of ELSI 9

2.1 Overview . 9

2.2 Prerequisites . 9

2.3 CMake Basics . 9

2.4 Configuration . 11

2.4.1 Compilers . 11

2.4.2 Solvers . 11

2.4.3 Build Targets . 12

2.4.4 List of All Configure Options . 13

2.4.5 “Toolchain” Files . 14

2.5 Importing ELSI into Third-Party Code Projects . 15

2.5.1 Linking against ELSI: CMake . 15

2.5.2 Linking against ELSI: Makefile . 15

2.5.3 Using ELSI . 15

3 The ELSI API 16

1

3.1 Overview of the ELSI API . 16

3.2 Setting Up ELSI . 16

3.2.1 Initializing ELSI . 16

3.2.2 Setting Up MPI . 18

3.2.3 Setting Up Matrix Formats . 18

3.2.4 Setting Up Multiple k -points and/or Spin Channels . 19

3.2.5 Reinitializaing ELSI . 20

3.2.6 Finalizing ELSI . 20

3.3 Solving Eigenvalues and Eigenvectors . 20

3.4 Computing Density Matrices . 22

3.5 Customizing ELSI . 23

3.5.1 Customizing the ELSI Interface . 23

3.5.2 Customizing the ELPA Solver . 25

3.5.3 Customizing the libOMM Solver . 25

3.5.4 Customizing the PEXSI Solver . 26

3.5.5 Customizing the SLEPc-SIPs Solver . 28

3.5.6 Customizing the NTPoly Solver . 29

3.6 Getting Additional Results from ELSI . 29

3.6.1 Getting Results from the ELSI Interface . 29

3.6.2 Getting Results from the PEXSI Solver . 30

3.6.3 Extrapolation of wavefunction and density matrix . 31

3.7 Parallel Matrix I/O . 32

3.7.1 Setting Up Matrix I/O . 32

3.7.2 Writing Matrices . 33

3.7.3 Reading Matrices . 34

3.8 Example Pseudo-Code . 36

3.9 C/C++ Interface . 41

2

1 Introduction

1.1 The Cubic Wall of Kohn-Sham Density-Functional Theory

In KS-DFT [1], the many-electron problem for the Born-Oppenheimer electronic ground state is reduced to a system of
single particle equations known as the Kohn-Sham equations

ĥKSψl = εlψl, (1.1)

where ψl and εl are Kohn-Sham orbitals and their associated eigenenergies, and ĥKS denotes the Kohn-Sham Hamil-
tonian, which includes the kinetic energy, the average electrostatic potential of the electron density and of the nuclei
(i.e. the Hartree potential), the exchange-correlation potential, and possible additional potential terms from external
electromagnetic fields. These terms depend on the electron density n, which is determined by the Kohn-Sham orbitals
ψl. These terms also enter the Hamiltonian ĥKS, which determines the Kohn-Sham orbitals ψl.

Due to this circular dependency, the Kohn-Sham equations are in fact a non-linear optimization problem, and therefore
must be solved iteratively. The most commonly used method is the self-consistent field (SCF) approach. It usually starts
from an initial guess of the electron density, from which the kinetic energy, electrostatic potential, exchange-correlation
potential, and external potential are computed, forming the Kohn-Sham Hamiltonian. Then, the Kohn-Sham orbitals
(wavefunctions) are solved from the Hamiltonian, and new electron density is computed from the Kohn-Sham orbitals.
To achieve self-consistency, the electron density is updated in every SCF iteration until converged to an acceptable level.

In almost all practical approaches, Nbasis basis functions φi(r) are employed to approximately expand the Kohn-Sham
orbitals:

ψl(r) =

Nbasis∑
j=1

cjlφj(r). (1.2)

The choice of basis set is one of the critical decisions in the design of an electronic structure code. Using non-orthogonal
basis functions (e.g., Gaussian functions, Slater functions, numeric atom-centered orbitals) in 1.2 converts 1.1 to a
generalized eigenvalue problem ∑

j

hijcjl = εl
∑
j

sijcjl, (1.3)

where hij and sij are the elements of the Hamiltonian matrix H and the overlap matrix S, which can be computed
through numerical integrations:

hij =

∫
d3r[φ∗i (r)ĥKSφj(r)],

sij =

∫
d3r[φ∗i (r)φj(r)].

(1.4)

1.3 can thus be expressed in the following matrix form

HC = SCε. (1.5)

Here, the matrix C and diagonal matrix ε contain the eigenvectors and eigenvalues, respectively, of the eigensystem of
the matrices H and S.

When using orthonormal basis sets (e.g. plane waves, multi-resolution wavelets), the eigenproblem described in 1.5
reduces to a standard form where sij = δij .

3

The explicit solution of 1.3 or 1.5 yields the Kohn-Sham orbitals ψi, from which the electron density n(r) can be computed
following an orbital-based method:

n(r) =

Nbasis∑
l=1

flψ
∗
l (r)ψl(r), (1.6)

where fl denotes the occupation number of each orbital. In an actual computation, it is sufficient to perform the
summation only for the occupied (fl > 0) orbitals. The ratio of occupied orbitals to the total number of basis functions
can be below 1% for plane wave basis sets, whereas with some localized basis sets, fewer basis functions are required,
leading to a larger fraction of occupied states.

An alternative method can be employed for localized basis functions:

n(r) =

Nbasis∑
i,j

φ∗i (r)pijφj(r), (1.7)

with pij being the elements of the density matrix P that need to be computed before the density update:

pij =

Nbasis∑
l=1

flcilcjl. (1.8)

From a viewpoint of computational complexity, with localized basis functions, almost all standard pieces of solving
the Kohn-Sham equations can be formulated in a linear scaling fashion with respect to the system size. The only
remaining bottleneck for semilocal functionals is the eigenproblem described in Eqs. 1.3 and 1.5. The density matrix is
directly accessible through methods other than diagonalization, therefore it is not always necessary to explicitly solve
the eigenproblem. Which algorithm to use depends on many factors such as the choice of basis set, and the system and
characters of the physical systems. In an SCF calculation, the eigenproblem needs to be tackled repeatedly. If this step
is treated with the most efficient algorithm, the whole SCF calculation can be greatly accelerated.

1.2 ELSI, the ELectronic Structure Infrastructure

ELSI unifies the community effort in overcoming the cubic-wall problem of KS-DFT by bridging the divide between
developers of electronic structure solvers and KS-DFT codes. Via a unified interface, ELSI gives KS-DFT developers
easy access to multiple solvers that solve or circumvent the Kohn-Sham eigenproblem efficiently. Solvers are treated
on equal footing within ELSI, giving solver developers a unified platform for implementation and benchmarking across
codes and physical systems. Solvers may be switched dynamically in an SCF cycle, allowing the KS-DFT developer to
mix-and-match strengths of different solvers. Solvers can work cooperatively with one another within ELSI, allowing for
acceleration greater than either solver can achieve individually. Most importantly, ELSI exists as a community for KS-
DFT and solver developers to interact and work together to improve performance of solvers, with monthly web meetings
to discuss progress on code development, yearly on-site “connector meetings”, and planned webinars and workshops.

The current version of ELSI supports ELPA [2, 3], libOMM [4], PEXSI [5, 6], SLEPc-SIPs [7, 8], and NTPoly [9] solvers.
Codes currently integrated with ELSI include DFTB+ [10], DGDFT [11], FHI-aims [12], and SIESTA [13].

• Versatility: ELSI supports real-valued and complex-valued density matrix, eigenvalue, and eigenvector calcula-
tions. A unified software interface designed for rapid integration into a variety of electronic structure codes is
provided. Fortran and C/C++ interfaces are provided.

• Flexibility: ELSI supports both dense and sparse matrices as input/output. Supported matrix distribution
layouts include 2D block-cyclic distribution, 1D block-cyclic distribution, and 1D block distribution. In situations
where the input/output matrix format used by the electronic structure code and the format used internally by the
requested solver are different, conversion and redistribution of matrices will be performed automatically.

• Scalability: The solver libraries collected in ELSI are highly scalable. For instance, ELPA can scale to a hundred
thousand CPU cores given a sufficiently large problem to solve, and PEXSI, with its efficient two-level parallelism,
easily scales to tens of thousands of CPU cores.

• Portability: ELSI and its redistributed library source packages have been confirmed to work on commonly-used
HPC architectures (Cray, IBM, Intel, NVIDIA) using major compilers (Cray, GNU, IBM, Intel, PGI).

4

1.3 Kohn-Sham Solver Libraries Supported by ELSI

Solvers supported in the current version of ELSI are: ELPA [2, 3], libOMM [4], PEXSI [5, 6], SLEPc-SIPc [7, 8], and
NTPoly [9]. The table below summarizes the supported data type, input/output matrix format, supported calculation
type, and possible outputs of the solvers.

Solver Data type Matrix format Spin/k-point Output
ELPA real/complex dense/sparse yes/yes eigenvalues, eigenvectors, density matrix,

energy-weighted density matrix, chemical po-
tential, electronic entropy

libOMM real/complex dense/sparse yes/yes density matrix, energy-weighted density ma-
trix

PEXSI real/complex dense/sparse yes/yes density matrix, energy-weighted density ma-
trix, chemical potential

SLEPc-SIPs real dense/sparse no/no eigenvalues, eigenvectors, density matrix,
energy-weighted density matrix, chemical po-
tential, electronic entropy

NTPoly real/complex dense/sparse yes/yes density matrix, energy-weighted density ma-
trix, chemical potential

What follows is a brief introduction of the solvers currently supported in ELSI. For detailed technical descriptions of the
solvers, the reader is referred to the original publications of the solvers, e.g., those in the reference list of this document.

1.3.1 ELPA

The explicit solution of a generalized or standard eigenproblem is a well-studied task. The generalized eigenproblem in
1.5 is first transformed to the standard form, e.g., by Cholesky decomposition of the overlap matrix S:

S = LL∗, (1.9)

where L is a lower triangular matrix. Applying L to H and C in the following way

H̃ = L−1H(L∗)−1,

C̃ = L∗C,
(1.10)

transforms 1.5 to a standard eigenproblem
H̃C̃ = C̃ε. (1.11)

This standard eigenproblem is solved by further transforming it to a tridiagonal form

T = QH̃Q∗, (1.12)

where Q is a transformation matrix, and T is a tridiagonal matrix whose eigenvalues and eigenvectors are computed
by, e.g., the divide-and-conquer approach or the MRRR method. This procedure is called “diagonalization”, as the full
matrix is reduced to a (tri)diagonal form.

The massively parallel direct eigensolver ELPA [2, 3] facilitates the direct solution of symmetric or Hermitian eigen-
problems on high-performance computers by adopting a two-stage diagonalization algorithm, which first reduces the full
matrix to a banded intermediate form, then to the tridiagonal form:

B = Q1H̃Q
∗
1,

T = Q2BQ
∗
2.

(1.13)

where Q1 and Q2 are transformation matrices used in the two-stage diagonalization; B is a banded matrix; and T is a
tridiagonal matrix. Compared to the one-stage diagonalization (1.12), the two-stage approach introduces two additional
steps. Still, the two-stage approach has been shown to enable faster computation and better parallel scalability on
present-day computers. Specifically, the matrix-vector operations (BLAS level-2 routines) in 1.12 can be mostly replaced
by more efficient matrix-matrix operations (BLAS level-3 routines) in 1.13. The computational workload associated with
the back-transformation of the eigenvectors is greatly alleviated if only a small fraction of the eigenvectors representing
the lowest eigenstates is required, and by architecture-specific linear-algebra “kernels” provided with the ELPA library.

5

1.3.2 libOMM

Instead of diagonalizing the Nbasis×Nbasis eigenproblem, the orbital minimization method (OMM) minimizes an uncon-
strained energy functional using a set of auxiliary Wannier functions. At the minimum of the OMM energy functional,
the Wannier functions can be used to construct the density matrix. Specifically, NW non-orthogonal Wannier functions
χk are employed to represent the occupied subspace of a system with Nelectron electrons:

χk =

Nbasis∑
j=1

Wkjφj . (1.14)

For non-spin-polarized systems, the index k runs from 1 toNW = Nelectron/2. Then the matricesH and S are transformed
into the occupied subspace

Homm = W ∗HW ,

Somm = W ∗SW ,
(1.15)

where W is the coefficient matrix of the Wannier functions, whose dimension is Nbasis × NW; Homm and Somm are
NW ×NW matrices. The OMM energy functional can then be evaluated from Homm and Somm:

E[W] = 4Tr[Homm]− 2Tr[SommHomm]. (1.16)

This energy functional, when minimized with respect to the coefficients of Wannier functions W , is equal to the band
structure energy, i.e. the sum of the energies of all eigenstates, weighted with their respective occupation numbers.
Furthermore, the Wannier functions are driven towards orthonormality at this minimum. The density matrix is then
constructed from the Wannier functions that minimize E[W].

Different from the originally proposed linear scaling OMM method, the OMM implementation in the libOMM library
[4] is a cubic scaling density matrix solver. Theoretically, this implementation has a smaller prefactor than the direct
diagonalization method. In libOMM, the minimization of the OMM energy functional is carried out with the conjugate-
gradient (CG) method, whose performance mainly depends on the convergence rate of the minimization.

1.3.3 PEXSI

The pole expansion and selected inversion (PEXSI) method [5, 6] expands the density matrix P with rational functions:

P =
∑
l

Im

(
ωl

H − (zl + µ)S

)
, (1.17)

where µ is the chemical potential of the system; {zl} and {ωl} are complex shifts and weights of the expansion terms.
About 20 poles are usually sufficient for the result obtained from PEXSI to be fully comparable to that obtained from
diagonalization. These poles can be processed in parallel, making PEXSI a highly scalable method on high performance
computers.

Only selected elements of the object (H − (zl + µ)S)−1 corresponding to non-zero elements of H and S are computed
with the parallel selected inversion method. The computational complexity of Eq. 1.17 depends on the dimensionality of
the system: O(N), O(N1.5), and O(N2) for 1D, 2D, and 3D systems, respectively. This favorable scaling does not rely on
the existence of an energy gap. The PEXSI method is thus generally applicable to insulating as well as metallic systems,
which differentiates PEXSI from traditional linear scaling algorithms.

1.3.4 SLEPc-SIPs

The shift-and-invert spectral transformation method, implemented in the SLEPc library [7], transforms the eigenproblem
1.5 by shifting the eigenspectrum:

(H − σS)C = SC(ε− σ), (1.18)

6

where σ is a diagonal matrix with diagonal elements all equal to the shift σ. This shifted eigenproblem is converted to
the standard form by inverting (H − σS) and (ε− σ):

(H − σS)−1SC = (ε− σ)−1C, (1.19)

If the shift can be chosen to be close to the target eigenvalue, 1.19 makes the magnitude of the transformed eigenvalues
large, accelerating the convergence of the iterative Krylov-Schur eigensolver used in SLEPc.

On top of the basic shift-and-invert, the shift-and-invert parallel spectral transformation (SIPs) method [8] partitions
the eigenspectrum of a given eigenproblem into Nslice slices. Accordingly, the processes involved in the calculation are
split into Nslice groups, each of which solves one slice independently. Within the slices, carefully selected shifts are
applied to the original problem. With this layer of parallelism across slices, the SLEPc-SIPs solver has the potential
to exhibit enhanced scalability over direct diagonalization methods, especially when the load balance across slices can
be guaranteed. Indeed, this has been reported to happen with very sparse Hamiltonian and overlap matrices out of
density-functional tight-binding (DFTB) calculations [8].

1.3.5 NTPoly

Density matrix purification is an established way to achieve linear scaling KS-DFT. Assume orthogonal basis set, the
density matrix P should satisfy the following conditions:

P = P ∗,

Tr(P) = Nelectron,

P = P 2.

(1.20)

An initial guess of such a matrix can be obtained by scaling the Hamiltonian matrix to make sure its eigenvalues lie in
between 0 and 1. Then, the “purification” method iteratively update the density matrix until it converges to a certain
threshold. The converged density matrix satisfies the three conditions in 1.20.

The process of density matrix purification can be written in the general form

P n+1 = f(P n), (1.21)

where P n is the density matrix in the nth purification iteration, P n+1 is the density matrix in the (n+1)th iteration, and
f(P) is usually a matrix polynomial, which can be calculated by matrix-matrix multiplications.

Various algorithms have been developed to carry out the density matrix purification efficiently, such as the canonical
purification [14], the trace resetting purification methods [15], and the generalized canonical purification [16]. These
methods are implemented in the NTPoly library [9] using its sparse matrix-matrix multiplication kernel. Given sufficiently
sparse matrices, the computational complexity of density matrix purification with NTPoly is O(N) for insulating systems.

1.4 Citing ELSI

Key concepts of ELSI and the first version of its implementation are described in the following paper [17]:

V. W-z. Yu, F. Corsetti, A. Garćıa, W. P. Huhn, M. Jacquelin, W. Jia, B. Lange, L. Lin, J. Lu, W. Mi, A. Seifitokaldani,
Á. Vázquez-Mayagoitia, C. Yang, H. Yang, and V. Blum, ELSI: A Unified Software Interface for Kohn-Sham Electronic
Structure Solvers, Computer Physics Communications, 222, 267-285 (2018).

In addition, an incomplete list of publications describing the solvers supported in ELSI may be found in the bibliography
of this document. Please consider citing these articles when publishing results obtained with ELSI.

1.5 Acknowledgments

ELSI is a National Science Foundation Software Infrastructure for Sustained Innovation - Scientific Software Integration
(SI2-SSI) supported software infrastructure project. The ELSI Interface software and this User’s Guide are based

7

upon work supported by the National Science Foundation under Grant Number 1450280. Any opinions, findings, and
conclusions or recommendations expressed here are those of the authors and do not necessarily reflect the views of the
National Science Foundation.

8

2 Installation of ELSI

2.1 Overview

The ELSI package contains the ELSI interface software as well as redistributed source code for the solver libraries ELPA
(version 2016.11.001), libOMM, PEXSI (version 1.2.0), and NTPoly (version 2.2). The installation of ELSI makes use
of the CMake software.

2.2 Prerequisites

To build ELSI, the minimum requirements are:

CMake [minimum version 3.0; newer version recommended]

Fortran compiler [with Fortran 2003]

C compiler [with C99]

MPI

Building the PEXSI solver (highly recommended) requires:

C++ compiler [with C++ 11]

Additionally, building the SLEPc-SIPs solver requires:

SLEPc [version 3.9.2 only]

PETSc [version 3.9.3 only, with SuperLU_DIST, MUMPS, ParMETIS, and PT-SCOTCH enabled]

Linear algebra libraries should be provided for ELSI to link against:

BLAS, LAPACK, BLACS, ScaLAPACK

By default, the redistributed ELPA, libOMM, and NTPoly solvers will be built. If PEXSI is enabled during configuration,
the redistributed PEXSI library and its dependencies, namely the SuperLU DIST and PT-SCOTCH libraries, will be
built as well. Optionally, the redistributed ELPA, libOMM, SuperLU DIST, PT-SCOTCH, and NTPoly libraries may be
substituted by user’s optimized versions. Please note that in the current version of ELSI, an external version of PEXSI
is not officially supported.

2.3 CMake Basics

This section covers some basics of using CMake. Users who are familiar with CMake may safely skip this section.

The typical workflow of using CMake to build ELSI looks like:

9

http://cmake.org

$ ls

CMakeLists.txt external/ src/ test/ ...

$ mkdir build

$ cd build

$ cmake [options] ..

...

...

-- Generating done

-- Build files have been written to: /current/dir

$ make [-j np]

$ make install

Whenever CMake is invoked, one of the command line arguments must point to the path where the top level CMake-
Lists.txt file exists, hence the “..” in the above example.

By default, CMake generates standard UNIX makefiles including specific rules to build the project with GNU make.
Other build systems may be chosen with the “-G” (G for generator) option of CMake. We recommend Ninja in particular,
which is a small build system with a focus on speed. A version of Ninja with Fortran support is freely available here.

To build ELSI with Ninja:

$ ls

CMakeLists.txt external/ src/ test/ ...

$ mkdir build

$ cd build

$ cmake -G Ninja [options] ..

...

...

-- Generating done

-- Build files have been written to: /current/dir

$ ninja

$ ninja install

Ninja also accepts the -j flag. Without this flag, Ninja runs on the number of available threads plus two by default (e.g.,
10 on a machine with 8 threads). Thus, -j is typically not necessary.

An option may be defined by adding “-DKeyword=Value” to the command line when invoking CMake. If “Keyword” is
of type boolean, its “Value” may be “ON” or “OFF”. If “Keyword” is a list of libraries or include directories, its items
should be separated with “;” (semicolon) or “ ” (space). For example,

-DCMAKE_INSTALL_PREFIX=/path/to/install/elsi

-DCMAKE_C_COMPILER=gcc

-DENABLE_TESTS=OFF

-DENABLE_PEXSI=ON

-DINC_PATHS="/path/to/include;/another/path/to/include"

-DLIBS="library1 library2 library3"

10

http://ninja-build.org
http://github.com/Kitware/ninja

Available options for building ELSI with CMake are introduced in the next sections. Other options of CMake itself are
available in its online documentation.

2.4 Configuration

2.4.1 Compilers

CMake automatically detects compilers. The choices made by CMake often work, but not necessarily lead to the optimal
performance. In some cases, the compilers picked up by CMake may not be the ones desired by the user. To build ELSI,
it is mandatory that the user explicitly sets the identification of the compilers:

-DCMAKE_Fortran_COMPILER=YOUR_MPI_FORTRAN_COMPILER

-DCMAKE_C_COMPILER=YOUR_MPI_C_COMPILER

-DCMAKE_CXX_COMPILER=YOUR_MPI_C++_COMPILER

Please note that the C++ compiler is not needed when building ELSI without PEXSI.

In addition, it is highly recommended to specify the compiler flags, in particular the optimization flags:

-DCMAKE_Fortran_FLAGS=YOUR_FORTRAN_COMPILE_FLAGS

-DCMAKE_C_FLAGS=YOUR_MPI_C_COMPILE_FLAGS

-DCMAKE_CXX_FLAGS=YOUR_MPI_C++_COMPILE_FLAGS

Note that with CMake versions older than 3.8.2, flags such as -std=c99 and -std=c++11 (or equivalents depending on
the compilers) must be given in order to ensure compliance with the C99 and C++11 standards.

2.4.2 Solvers

The ELPA, libOMM, PEXSI, and NTPoly solver libraries, as well as the SuperLU DIST and PT-SCOTCH libraries
(both required by PEXSI), are redistributed with the current ELSI package.

The redistributed version of ELPA comes with a few “kernels” specifically written to take advantage of processor ar-
chitecture (e.g. vectorization instruction set extensions). A kernel may be chosen by the ELPA2 KERNEL keyword.
Available options are:

-DELPA2_KERNEL=BGQ

-DELPA2_KERNEL=AVX

-DELPA2_KERNEL=AVX2

-DELPA2_KERNEL=AVX512

for the IBM Blue Gene Q, Intel AVX, Intel AVX2, and Intel AVX512 architectures, respectively. In ELPA, these kernels
are employed to accelerate the calculation of eigenvectors, which is often a computational bottleneck when calculating
a large percentage of eigenvectors. If this is the case in the user’s application, it is highly recommended that the user
selects the kernel most suited to their system architecture.

Experienced users are encouraged to link the ELSI interface against external, better optimized solver libraries. Relevant
options for this purpose are:

11

-DUSE_EXTERNAL_ELPA=ON

-DUSE_EXTERNAL_OMM=ON

-DUSE_EXTERNAL_SUPERLU=ON

-DUSE_EXTERNAL_NTPOLY=ON

The external libraries and the include paths should be set via the following three keywords:

-DLIB_PATHS=DIRECTORIES_CONTAINING_YOUR_EXTERNAL_LIBRARIES

-DINC_PATHS=INCLUDE_DIRECTORIES_OF_YOUR_EXTERNAL_LIBRARIES

-DLIBS=NAMES_OF_YOUR_EXTERNAL_LIBRARIES

Each of the above keywords is a space-separated or semicolon-separated list. If an external library depends on additional
libraries, LIBS should include all the relevant libraries. For instance, LIBS should include the ELPA library and CUDA
libraries when using an external ELPA compiled with GPU (CUDA) support; LIBS should include the SuperLU DIST
library and the sparse matrix reordering library used to compile SuperLU DIST when using an external SuperLU DIST.
Please note that in the current version of ELSI, an external version of PEXSI is not officially supported.

The PEXSI and SLEPc-SIPs solvers are not enabled by default. PEXSI may be activated by specifying:

-DENABLE_PEXSI=ON

if using redistributed SuperLU DIST with PT-SCOTCH, or

-DENABLE_PEXSI=ON

-DUSE_EXTERNAL_SUPERLU=ON

-DINC_PATHS="/path/to/superlu_dist/include;/path/to/matrix/reordering/include"

-DLIB_PATHS="/path/to/superlu_dist/library;/path/to/matrix/reordering/include"

-DLIBS="superlu_dist;your_choice_of_matrix_reordering_library"

if using an externally compiled SuperLU DIST. SuperLU DIST 5.1.3, 5.3.0, 5.4.0, and 6.1.1 have been tested with this
version of ELSI. Older/newer versions may or may not be compatible.

SLEPc-SIPs may be activated by specifying:

-DENABLE_SIPS=ON

-DUSE_EXTERNAL_SUPERLU=ON

-DINC_PATHS="/path/to/slepc/include;/path/to/slepc/${PETSC_ARCH}/include;

/path/to/petsc/include;/path/to/${PETSC_ARCH}/include"

-DLIB_PATHS="/path/to/slepc/${PETSC_ARCH}/library;/path/to/petsc/${PETSC_ARCH}/library"

-DLIBS="slepc;petsc;cmumps;dmumps;smumps;zmumps;mumps_common;pord;superlu_dist;parmetis;

metis;ptesmumps;ptscotchparmetis;ptscotch;ptscotcherr;esmumps;scotchmetis;scotch;scotcherr"

SLEPc 3.9.2 and PETSc 3.9.4 have been tested with this version of ELSI. Older/newer versions may or may not be com-
patible. The PETSc library must be compiled with MPI support, and (at least) with external packages SuperLU DIST,
MUMPS, ParMETIS, and PT-SCOTCH enabled. The SuperLU DIST library redistributed through ELSI must be turned
off by setting USE EXTERNAL SUPERLU to “ON”, as SuperLU DIST is already present in the PETSc installation.

2.4.3 Build Targets

By default, a static library (libelsi.a) will be created as the target of the compilation. Building ELSI as a shared library
may be enabled by:

12

-DBUILD_SHARED_LIBS=ON

Building ELSI test programs may be enabled by:

-DENABLE_TESTS=ON

In either case, linear algebra libraries, BLAS, LAPACK, BLACS, and ScaLAPACK, should be valid in the LIB PATHS
and LIBS keywords.

If test programs are turned on, the compilation of ELSI may be verified by

$ make test

or

$ ninja test

depending on the generator option “-G” used when invoking CMake. Alternatively, issue

$ ctest

to invoke the CTest program which performs all tests automatically. Note that the tests may not run if launching MPI
jobs is prohibited on the user’s working platform.

In order to install ELSI at the location specified by CMAKE INSTALL PREFIX, issue

$ make install

or

$ ninja install

depending on the CMake generator option “-G” used.

Among the files copied to the installation destinations is a CMake configuration file called elsiConfig.cmake. This file
includes all the information about how the ELSI library and its dependencies should be included in an external CMake
project. Please refer to 2.5 for information regarding linking a third-party package against ELSI.

2.4.4 List of All Configure Options

The options accepted by the ELSI CMake build system are listed here in alphabetical order. Some additional explanations
are made below the table.

13

Option Type Default Explanation
ADD UNDERSCORE boolean ON Suffix C functions with an underscore
BUILD SHARED LIBS boolean OFF Build ELSI as a shared library
CMAKE C COMPILER string none MPI C compiler
CMAKE C FLAGS string none C flags
CMAKE CXX COMPILER string none MPI C++ compiler
CMAKE CXX FLAGS string none C++ flags
CMAKE Fortran COMPILER string none MPI Fortran compiler
CMAKE Fortran FLAGS string none Fortran flags
CMAKE INSTALL PREFIX path /usr/local Path to install ELSI
ELPA2 KERNEL string none ELPA2 kernel
ENABLE C TESTS boolean OFF Build C test programs
ENABLE PEXSI boolean OFF Enable PEXSI support
ENABLE SIPS boolean OFF Enable SLEPc-SIPs support
ENABLE TESTS boolean OFF Build Fortran test programs
INC PATHS string none Include directories of external libraries
LIB PATHS string none Directories containing external libraries
LIBS string none External libraries
MPIEXEC NP string mpirun -n 4 Command to run tests in parallel with MPI
MPIEXEC 1P string mpirun -n 1 Command to run tests in serial with MPI
SCOTCH LAST RESORT string none Command to invoke PT-SCOTCH header generator
USE EXTERNAL ELPA boolean OFF Use external ELPA
USE EXTERNAL OMM boolean OFF Use external libOMM and MatrixSwitch
USE EXTERNAL SUPERLU boolean OFF Use external SuperLU DIST

Remarks

1) ADD UNDERSCORE: In the PEXSI and SuperLU DIST code redistributed through ELSI, there are calls to functions
of the linear algebra libraries, e.g. “dgemm”. If ADD UNDERSCORE is “ON”, the code will call “dgemm ” instead
of “dgemm”. Turn this keyword on if routines are suffixed with “ ” in external linear algebra libraries. Turn it off if
routines are not suffixed with “ ”.

2) ELPA2 KERNEL: There are a number of computational kernels available with the ELPA solver. Choose from “BGQ”
(IBM Blue Gene Q), “AVX” (Intel AVX), “AVX2” (Intel AVX2), and “AVX512” (Intel AVX512). See 2.4.2 for more
information.

3) SCOTCH LAST RESORT: The compilation of the PT-SCOTCH library is a multi-step process. First, two auxiliary
executables are created. Then, header files of the library are generated by running the two executables. Finally, the main
source files of the library are compiled with the generated header files included. The header generation step may fail on
platforms where directly running an executable is prohibited on a login/compile node. Often this can be circumvented
by requesting an interactive session to a compute node and performing the compilation there, or by submitting the whole
compilation as a job to the queuing system. However, this may still fail on platforms where an executable compiled with
MPI must be launched by an MPI job launcher (aprun, mpirun, srun, etc). If the standard compilation of PT-SCOTCH
fails due to this reason, the user may set SCOTCH LAST RESORT to the command that starts an MPI job with one
MPI task, e.g. “mpirun -n 1”. This command will be used to launch the auxiliary executables to generate necessary
header files for PT-SCOTCH.

4) External libraries: ELSI redistributes source code of ELPA, libOMM, PEXSI, SuperLU DIST, and PT-SCOTCH
libraries, which by default will be built together with the ELSI interface. Experienced users are encouraged to link the
ELSI interface against external, better optimized solver libraries. See 2.4.2 for more information.

2.4.5 “Toolchain” Files

It is sometimes convenient to edit the settings in a “toolchain” file that can be read by CMake:

-DCMAKE_TOOLCHAIN_FILE=YOUR_TOOLCHAIN_FILE

14

Example “toolchains” are provided in the “./toolchains” directory of the ELSI package, which the user may use as
templates to create new ones.

2.5 Importing ELSI into Third-Party Code Projects

2.5.1 Linking against ELSI: CMake

A CMake configuration file called elsiConfig.cmake should be generated after ELSI is successfully installed (see 2.4.3).
This file contains all the information about how the ELSI library and its dependencies should be included in an external
project. For a project using CMake, only two lines are required to find and link to ELSI:

find_package(elsi REQUIRED)

target_link_libraries(my_project PRIVATE elsi::elsi)

If a minimum version of ELSI is required, this information may be passed to “find_package” by:

find_package(elsi 2.0 REQUIRED)

If the installed ELSI version is older than the requested minimum version, CMake stops with an appropriate error
message. Other options of “find_package” are available in the documentation of CMake.

2.5.2 Linking against ELSI: Makefile

For a project using makefiles, an example set of compiler flags to link against ELSI would be:

ELSI_INCLUDE = -I/PATH/TO/BUILD/ELSI/include

ELSI_LIB = -L/PATH/TO/BUILD/ELSI/lib -lelsi \

-lfortjson -lOMM -lMatrixSwitch -lelpa \

-lNTPoly -lpexsi -lsuperlu_dist \

-lptscotchparmetis -lptscotch -lptscotcherr \

-lscotchmetis -lscotch -lscotcherr

Enabling/disabling PEXSI and SLEPc-SIPs or linking ELSI against preinstalled solver libraries will require the user
modify these flags accordingly.

2.5.3 Using ELSI

ELSI may be used in an electronic structure code by importing the appropriate header file. For codes written in Fortran,
this is done by using the ELSI module

USE ELSI

For codes written in C, the ELSI wrapper may be imported by including the header file

#include <elsi.h>

These import statements give the electronic structure code access to the ELSI interface. In the next chapter, we will
describe the API for the ELSI interface.

15

3 The ELSI API

3.1 Overview of the ELSI API

In this chapter, we present the public-facing API for the ELSI Interface. We anticipate that fine details of this interface
may change slightly in the future, but the fundamental structure of the interface layer is expected to remain consistent.
While this chapter serves as a reference to the ELSI subroutines, the user is encouraged to explore the demonstration
pseudo-codes of ELSI in 3.8.

To allow multiple instances of ELSI to co-exist within a single calling code, we define an elsi handle data type to
encapsulate the state of an ELSI instance, i.e., all runtime parameters associated with the ELSI instance. An elsi handle

instance is initialized with the elsi init subroutine and is subsequently passed to all other ELSI subroutine calls.

ELSI provides a C interface in addition to the native Fortran interface. The vast majority of this chapter, while written
from a Fortran-ic standpoint, applies equally to both interfaces. Information specifically about the C wrapper for ELSI
may be found in 3.9.

3.2 Setting Up ELSI

3.2.1 Initializing ELSI

The ELSI interface must be initialized via the elsi init subroutine before any other ELSI subroutine may be called.

elsi init(handle, solver, parallel mode, matrix format, n basis, n electron, n state)

Argument Data Type in/out Explanation
handle type(elsi handle) out Handle to ELSI.
solver integer in Desired solver. Accepted values are: 0 (AUTO), 1 (ELPA),

2 (libOMM), 3 (PEXSI), 5 (SLEPc-SIPs), and 6 (NTPoly).
See remark 1.

parallel mode integer in Parallelization mode. Accepted values are: 0 (SIN-
GLE PROC) and 1 (MULTI PROC). See remark 4.

matrix format integer in Matrix format. Accepted values are: 0 (BLACS DENSE), 1
(PEXSI CSC), 2 (SIESTA CSC), and 3 (GENERIC COO).
See remark 2.

n basis integer in Number of basis functions, i.e. global size of Hamiltonian.
n electron real double in Number of electrons.
n state integer in Number of states. See remark 3.

Remarks

1) solver: Refer to 1.3 for supported features of each solver. The AUTO(0) option attempts to automate the solver selec-
tion procedure based on benchmarks performed and experiences gained in the ELSI project. User-supplied information
may assist in finding the optimal solver. In particular, see elsi set dimensionality and elsi set energy gap in 3.5. Simply

16

put, the solver selection favors ELPA for small-and-medium-sized problems, PEXSI for large, sparse, low-dimensional
problems, and NTPoly for extra-large, sparse systems with a decent energy gap.

2) matrix format: BLACS DENSE(0) refers to a dense matrix format in a 2-dimensional block-cyclic distribution, i.e.
the BLACS standard. PEXSI CSC(1) refers to a compressed sparse column (CSC) matrix format in a 1-dimensional
block distribution. SIESTA CSC(2) refers to a compressed sparse column (CSC) matrix format in a 1-dimensional block-
cyclic distribution. As the Hamiltonian, overlap, and density matrices are symmetric (Hermitian), compressed sparse row
(CSR) matrix format is effectively supported. GENERIC COO(3) refers to a coordinate (COO) sparse matrix format in
an arbitrary distribution. Please refer to 3.2.3 for specifications of these matrix formats.

3) n state: If ELPA or SLEPc-SIPs is the chosen solver, this parameter specifies the number of eigenstates to solve by
the eigensolver. If libOMM is the chosen solver, n state must be exactly the number of occupied states, as libOMM
cannot handle fractional occupation numbers[4]. PEXSI and NTPoly do not make use of this parameter, thus a dummy
value may be passed.

4) parallel mode: The two allowed values of parallel mode, 0 (SINGLE PROC) and 1 (MULTI PROC), allow for three
parallelization strategies commonly employed by electronic structure codes. See below.

3a) SINGLE PROC: Solves the KS eigenproblem following a LAPACK-like fashion. This option may only be selected
when ELPA is chosen as the solver. Every MPI task independently handles a group of k -points uniquely assigned to it.

• Example: 16 k -points, 4 MPI tasks.

• MPI task 0 handles k -points 1, 2, 3, 4 sequentially;

• MPI task 1 handles k -points 5, 6, 7, 8 sequentially;

• MPI task 2 handles k -points 9, 10, 11, 12 sequentially;

• MPI task 3 handles k -points 13, 14, 15, 16 sequentially.

call elsi_init (eh, ..., parallel_mode=0, ...)

...

do i_kpt = 1, n_kpt_local

call elsi_ev_{real|complex} (eh, ham_this_kpt, ovlp_this_kpt, eval_this_kpt, evec_this_kpt)

end do

3b) MULTI PROC: Solves the KS eigenproblem following a ScaLAPACK-like fashion. This allows the usage of the
following parallelization strategy:

Groups of MPI tasks coordinate to handle the same k -point, uniquely assigned to that group.

• Example: 4 k -points, 16 MPI tasks.

• MPI tasks 0, 1, 2, 3 cooperatively handle k -point 1;

• MPI tasks 4, 5, 6, 7 cooperatively handle k -point 2;

• MPI tasks 8, 9, 10, 11 cooperatively handle k -point 3;

• MPI tasks 12, 13, 14, 15 cooperatively handle k -point 4.

call elsi_init (eh, ..., parallel_mode=1, ...)

call elsi_set_mpi (eh, my_mpi_comm)

call elsi_set_kpoint (eh, n_kpt, my_kpt, my_weight)

call elsi_set_mpi_global (eh, mpi_comm_global)

...

call elsi_{ev|dm}_{real|complex} (eh, my_ham, my_ovlp, ...)

17

Please note that when there is more than one k -point, a global MPI communicator must be provided for inter-k -point
communications. See 3.2.4 for elsi set kpoint, elsi set spin, and elsi set mpi global, which are used to set up a calculation
with two spin channels and/or multiple k -points.

3.2.2 Setting Up MPI

The MPI communicator used by ELSI is passed into ELSI by the calling code via the elsi set mpi subroutine. When there
is more than one k -point and/or spin channel, this communicator will be used only for solving one problem corresponding
to one k -point and one spin channel. See 3.2.4 for details.

elsi set mpi(handle, mpi comm)

Argument Data Type in/out Explanation
handle type(elsi handle) inout Handle to ELSI.
mpi comm integer in MPI communicator.

3.2.3 Setting Up Matrix Formats

Four matrix formats are currently supported by ELSI, namely 2D block-cyclic distributed dense matrix format (BLACS DENSE),
1D block distributed compressed sparse column format (PEXSI CSC), 1D block-cyclic distributed compressed sparse col-
umn format, (SIESTA CSC), arbitrarily distributed coordinate sparse format (GENERIC COO).

When using the BLACS DENSE format, BLACS parameters are passed into ELSI via the elsi set blacs subroutine. The
matrix format used internally in the ELSI interface and the ELPA solver requires the block sizes of the 2-dimensional
block-cyclic distribution are the same in the row and column directions. It is necessary to call this subroutine before
calling any solver interface that makes use of the BLACS DENSE format.

elsi set blacs(handle, blacs ctxt, block size)

Argument Data Type in/out Explanation
handle type(elsi handle) inout Handle to ELSI.
blacs ctxt integer in BLACS context.
block size integer in Block size of the 2D block-cyclic distribution, specifying

both row and column directions.

When using the PEXSI CSC or SIESTA CSC format, the sparsity pattern should be passed into ELSI via the elsi set csc
subroutine. It is necessary to call this subroutine before calling any solver interface that makes use of the CSC sparse
matrix formats.

elsi set csc(handle, global nnz, local nnz, local col, row idx, col ptr)

Argument Data Type in/out Explanation
handle type(elsi handle) inout Handle to ELSI.
global nnz integer in Global number of non-zeros.
local nnz integer in Local number of non-zeros.
local col integer in Local number of matrix columns.
row idx integer, rank-1 array in Local row index array. Dimension: local nnz.
col ptr integer, rank-1 array in Local column pointer array. Dimension: local col+1.

The block size of the PEXSI CSC format cannot be set by the user. This is because the PEXSI solver requires that
the block size must be floor(N basis/N procs), where floor(x) is the greatest integer less than or equal to x, N basis and
N procs are the number of basis functions and the number of MPI tasks, respectively. The block size of the SIESTA CSC
must be explicitly set by calling elsi set csc blk.

18

elsi set csc blk(handle, block size)

Argument Data Type in/out Explanation
handle type(elsi handle) inout Handle to ELSI.
global nnz integer in Block size of the 1D block-cyclic distribution.

In most cases, input and output matrices should be distributed across all MPI tasks. The only exception is when using
the PEXSI solver, one of the sparse density matrix interfaces (elsi dm real sparse or elsi dm complex sparse), and the
PEXSI CSC matrix format. In this case, an additional parameter, pexsi np per pole, must be set by the user. Input and
output matrices should be 1D-block-distributed among the first pexsi np per pole MPI tasks (not all the MPI tasks).
Please also read the 2nd remark in 3.5.4 for more information.

When using the GENERIC COO format, the sparsity pattern should be passed into ELSI via the elsi set coo subroutine.
It is necessary to call this subroutine before calling any solver interface that makes use of the COO sparse matrix format.

elsi set coo(handle, global nnz, local nnz, row idx, col idx)

Argument Data Type in/out Explanation
handle type(elsi handle) inout Handle to ELSI.
global nnz integer in Global number of non-zeros.
local nnz integer in Local number of non-zeros.
row idx integer, rank-1 array in Local row index array. Dimension: local nnz.
col idx integer, rank-1 array in Local column index array. Dimension: local nnz.

The distribution of matrix elements in the GENERIC COO format is arbitrary. Both sorted and unsorted inputs are
supported.

3.2.4 Setting Up Multiple k-points and/or Spin Channels

When there is more than one k -point and/or spin channel in the simulating system, the ELSI interface can be set up to
support parallel calculation of the k -points and/or spin channels. The base case is a system isolated in space, e.g. free
atoms, molecules, clusters, without spin-polarization. In this case, there is one eigenproblem in each iteration of an SCF
cycle. When a spin-polarized periodic system is considered, 1.3 should have an index α denoting the spin channel, and
an index k denoting points in reciprocal space:

Hα
kC

α
k = SkC

α
kε
α
k . (3.1)

In total, there are Nkpt × Nspin eigenproblems to solve. They can be solved in an embarrassingly parallel fashion. In
ELSI, eigenproblems in 3.1 are considered as equivalent “unit tasks”. The available computer processes are divided into
Nkpt ×Nspin groups, each of which is responsible for one unit task.

To set up the ELSI interface for a calculation with more than one k -point and/or more than one spin channel, the
elsi set kpoint and/or elsi set spin subroutines are called to pass the required information into ELSI. The MPI commu-
nicator for each unit task is passed into ELSI by calling elsi set mpi. In addition, a global MPI communicator for all
tasks is passed into ELSI by calling elsi set mpi global. Note that the current ELSI interface only supports the case
where the eigenproblems for all the k -points and spin channels are fully parallelized, i.e., there is no MPI task handling
more than one k -point and/or more than one spin channel. In ELSI, the two spin channels are always coupled by a
uniform chemical potential. The distribution of electrons among the two channels, and thus the net spin moment of the
system, cannot be specified. Calculations with a fixed, user-specified spin moment can be performed by initializing two
independent ELSI instances for the two spin channels.

In this version of ELSI, the SLEPc-SIPs eigensolver is not supported in spin-polarized and/or periodic calculations.

19

elsi set kpoint(handle, n kpt, i kpt, weight)

Argument Data Type in/out Explanation
handle type(elsi handle) inout Handle to ELSI.
n kpt integer in Total number of k -points.
i kpt integer in Index of the k -point handled by this MPI task.
weight integer in Weight of the k -point handled by this MPI task.

elsi set spin(handle, n spin, i spin)

Argument Data Type in/out Explanation
handle type(elsi handle) inout Handle to ELSI.
n spin integer in Total number of spin channels.
i spin integer in Index of the spin channel handled by this MPI task.

elsi set mpi global(handle, mpi comm global)

Argument Data Type in/out Explanation
handle type(elsi handle) inout Handle to ELSI.
mpi comm global integer in Global MPI communicator used for communications among

all k -points and spin channels.

3.2.5 Reinitializaing ELSI

When a geometry update takes place in geometry optimization or molecular dynamics calculations, the overlap matrix
changes due to the movement of localized basis functions. Calling elsi reinit instructs ELSI to flush geometry-related
variables and arrays that cannot be used in the new geometry step, e.g., the overlap matrix and its sparsity pattern.
Other runtime parameters are kept within the ELSI instance and reused throughout multiple geometry steps.

elsi reinit(handle)

3.2.6 Finalizing ELSI

When an ELSI instance is no longer needed, its associated handle should be cleaned up by calling elsi finalize.

elsi finalize(handle)

Argument Data Type in/out Explanation
handle type(elsi handle) inout Handle to ELSI.

3.3 Solving Eigenvalues and Eigenvectors

The following subroutines return all the eigenvalues and a subset of eigenvectors of the provided generalized eigenproblem
defined by H and S matrices. For standard eigenproblems, please see elsi set unit ovlp in 3.5.1. Only ELPA and SLEPc-
SIPs may be selected as the solver when using these subroutines.

20

elsi ev real(handle, ham, ovlp, eval, evec)

Argument Data Type in/out Explanation
handle type(elsi handle) inout Handle to ELSI.
ham real double, rank-2 array inout Real Hamiltonian matrix in 2D block-cyclic dense for-

mat. See remark 1.
ovlp real double, rank-2 array inout Real overlap matrix (or its Cholesky factorization) in

2D block-cyclic dense format. See remark 1.
eval real double, rank-1 array inout Eigenvalues. See remark 2.
evec real double, rank-2 array out Real eigenvectors in 2D block-cyclic dense format. See

remark 3.

elsi ev complex(handle, ham, ovlp, eval, evec)

Argument Data Type in/out Explanation
handle type(elsi handle) inout Handle to ELSI.
ham complex double, rank-2 array inout Complex Hamiltonian matrix in 2D block-cyclic dense

format. See remark 1.
ovlp complex double, rank-2 array inout Complex overlap matrix (or its Cholesky factorization)

in 2D block-cyclic dense format. See remark 1.
eval real double, rank-1 array inout Eigenvalues. See remark 2.
evec complex double, rank-2 array out Complex eigenvectors in 2D block-cyclic dense format.

See remark 3.

elsi ev real sparse(handle, ham, ovlp, eval, evec)

Argument Data Type in/out Explanation
handle type(elsi handle) inout Handle to ELSI.
ham real double, rank-1 array inout Real Hamiltonian matrix in 1D block CSC, 1D block-

cyclic CSC, or generic COO sparse format.
ovlp real double, rank-1 array inout Real overlap matrix in 1D block CSC, 1D block-cyclic

CSC, or generic COO sparse format.
eval real double, rank-1 array inout Eigenvalues. See remark 2.
evec real double, rank-2 array out Real eigenvectors in 2D block-cyclic dense format. See

remark 3.

elsi ev complex sparse(handle, ham, ovlp, eval, evec)

Argument Data Type in/out Explanation
handle type(elsi handle) inout Handle to ELSI.
ham complex double, rank-1 array inout Complex Hamiltonian matrix in 1D block CSC, 1D

block-cyclic CSC, or generic COO sparse format.
ovlp complex double, rank-1 array inout Complex overlap matrix in 1D block CSC, 1D block-

cyclic CSC, or generic COO sparse format.
eval real double, rank-1 array inout Eigenvalues. See remark 2.
evec complex double, rank-2 array out Complex eigenvectors in 2D block-cyclic dense format.

See remark 3.

Remarks

1) The Hamiltonian matrix will be destroyed by ELPA during computation. ELPA will overwrite the overlap matrix
with its Cholesky factorization, which will be reused by subsequent subroutine calls to elsi ev real or elsi ev complex.

21

When using elsi ev real sparse, the Cholesky factorization (not sparse) is stored internally in the BLACS DENSE format.
Starting from the second call to elsi ev real sparse, the input sparse overlap matrix will not be referenced.

2) When using the ELPA solver, elsi ev real, elsi ev complex, elsi ev real sparse, and elsi ev complex sparse always
compute all the eigenvalues, regardless of the choice of n state specified in elsi init. The dimension of eval thus should
always be n basis.

3) When using the ELPA solver, elsi ev real, elsi ev complex, elsi ev real sparse, and elsi ev complex sparse compute a
subset of all eigenvectors. The number of eigenvectors to compute is specified by the keyword n state in elsi init. However,
the local eigenvectors array should always be initialized to correspond to a global array of size n basis × n basis, whose
extra part is used as working space in ELPA. Note that when using elsi ev real sparse and elsi ev complex sparse, the
eigenvectors are returned in a dense format (BLACS DENSE), as they are in general not sparse.

3.4 Computing Density Matrices

The following subroutines return the density matrix computed from the provided H and S matrices, as well as the band
structure energy.

elsi dm real(handle, ham, ovlp, dm, bs energy)

Argument Data Type in/out Explanation
handle type(elsi handle) inout Handle to ELSI.
ham real double, rank-2 array inout Real Hamiltonian matrix in 2D block-cyclic dense for-

mat.
ovlp real double, rank-2 array inout Real overlap matrix (or Cholesky factorization) in 2D

block-cyclic dense format. See remark 1.
dm real double, rank-2 array out Real density matrix in 2D block-cyclic dense format.
energy real double out Band structure energy.

elsi dm complex(handle, ham, ovlp, dm, energy)

Argument Data Type in/out Explanation
handle type(elsi handle) inout Handle to ELSI.
ham complex double, rank-2 array inout Complex Hamiltonian matrix in 2D block-cyclic dense

format.
ovlp complex double, rank-2 array inout Complex overlap matrix (or its Cholesky factorization)

in 2D block-cyclic dense format. See remark 1.
dm complex double, rank-2 array out Complex density matrix in 2D block-cyclic dense for-

mat.
energy real double out Band structure energy.

elsi dm real sparse(handle, ham, ovlp, dm, energy)

Argument Data Type in/out Explanation
handle type(elsi handle) inout Handle to ELSI.
ham real double, rank-1 array inout Non-zero values of the real Hamiltonian matrix in 1D

block CSC, 1D block-cyclic CSC, or generic COO sparse
format.

ovlp real double, rank-1 array inout Non-zero values of the real overlap matrix in 1D block
CSC, 1D block-cyclic CSC, or generic COO sparse for-
mat.

dm real double, rank-1 array out Non-zero values of the real density matrix in 1D block
CSC, 1D block-cyclic CSC, or generic COO sparse for-
mat.

energy real double out Band structure energy.

22

elsi dm complex sparse(handle, ham, ovlp, dm, energy)

Argument Data Type in/out Explanation
handle type(elsi handle) inout Handle to ELSI.
ham complex double, rank-1 array inout Non-zero values of the complex Hamiltonian matrix in

1D block CSC, 1D block-cyclic CSC, or generic COO
sparse format.

ovlp complex double, rank-1 array inout Non-zero values of the complex overlap matrix in 1D
block CSC, 1D block-cyclic CSC, or generic COO sparse
format.

dm complex double, rank-1 array out Non-zero values of the complex density matrix in 1D
block CSC, 1D block-cyclic CSC, or generic COO sparse
format.

energy real double out Band structure energy.

Remarks

1) When using elsi dm real or elsi dm complex with ELPA or libOMM, the Hamiltonian matrix will be destroyed during
the computation. The overlap matrix will be used to store its Cholesky factorization, which will be reused until the
overlap matrix changes.

3.5 Customizing ELSI

In ELSI, reasonable default values have been provided for a number of parameters used in the ELSI interface the the
supported solvers. However, no set of default parameters can adequately cover all use cases. Parameters that can be
overridden are described in the following subsections.

3.5.1 Customizing the ELSI Interface

In all the subroutines listed below, the first argument (input and output) is an elsi handle. The second argument (input)
of each subroutine is the name of parameter to set. Note that logical variables are not used in ELSI API. Integers are
used to represent logical, with 0 being false and any positive integer being true.

elsi set output(handle, output level)

elsi set output unit(handle, output unit)

elsi set output log(handle, output log)

elsi set save ovlp(handle, save ovlp)

elsi set unit ovlp(handle, unit ovlp)

elsi set zero def(handle, zero def)

elsi set illcond check(handle, illcond check)

elsi set illcond tol(handle, illcond tol)

elsi set illcond abort(handle, illcond abort)

elsi set energy gap(handle, energy gap)

elsi set spectrum width(handle, spectrum width)

elsi set dimensionality(handle, dimensionality)

elsi set mu broaden scheme(handle, mu broaden scheme)

23

elsi set mu mp order(handle, mu mp order)

elsi set mu broaden width(handle, mu broaden width)

elsi set mu tol(handle, mu tol)

elsi set write unit(handle, write unit)

elsi set sing check(handle, sing check)

elsi set sing tol(handle, sing tol)

elsi set sing stop(handle, sing stop)

Argument Data Type Default Explanation
output level integer 0 Output level of the ELSI interface. 0: no output. 1: standard

ELSI output. 2: 1 + info from the solvers. 3: 2 + additional
debug info.

output unit integer 6 The unit used in ELSI to write out information.
output log integer 0 If not 0, a separate log file in JSON format will be written out.
save ovlp integer 0 If not 0, the overlap matrix will be saved for extrapolation of

density matrix or eigenvectors to a new geometry.
unit ovlp integer 0 If not 0, the overlap matrix will be treated as an identity (unit)

matrix in ELSI and the solvers. See remark 1.
zero def real double 10−15 When converting a matrix from dense to sparse format, values

below this threshold will be discarded.
illcond check integer 0 If not 0, the eigenvalues of the overlap matrix will be calculated

in order to check if it is ill-conditioned. See remark 2.
illcond tol real double 10−5 Eigenfunctions of the overlap matrix with eigenvalues smaller than

this threshold will be removed to avoid ill-conditioning. See re-
mark 2.

illcond abort integer 0 If not 0, the code always stops if the overlap matrix is detected to
be ill-conditioned. See remark 2.

energy gap real double 0 Energy gap. See remark 3.
spectrum width real double 103 Width of the eigenspectrum. See remark 3.
dimensionality integer 3 Dimensionality (1, 2, or 3) of the simulating system. Only used

for automatic solver selection.
mu broaden scheme integer 0 The broadening scheme employed to compute the occupation

numbers and the Fermi level. 0: Gaussian. 1: Fermi-Dirac. 2:
Methfessel-Paxton. 4: Marzari-Vanderbilt.

mu mp order integer 0 The order of the Methfessel-Paxton broadening scheme. No effect
if Methfessel-Paxton is not the chosen broadening scheme.

mu broaden width real double 0.01 The broadening width employed to compute the occupation num-
bers and the Fermi level. See remark 4.

mu tol real double 10−13 The convergence tolerance (in terms of the absolute error in elec-
tron count) of the bisection algorithm employed to compute the
occupation numbers and the Fermi level.

write unit integer 6 Deprecated; use elsi set output unit instead.
sing check integer 0 Deprecated; use elsi set illcond check instead.
sing tol real double 10−5 Deprecated; use elsi set illcond tol instead.
sing stop integer 0 Deprecated; use elsi set illcond abort instead.

Remarks

1) If the overlap matrix is set to be an identity matrix, all settings related to the singularity (ill-conditioning) check
take no effect. The ovlp argument passed into elsi ev real, elsi ev complex, elsi ev real sparse, elsi ev complex sparse,
elsi dm real, elsi dm complex, elsi dm real sparse, and elsi dm complex sparse will not be referenced.

2) If the ill-conditioning check is not disabled, in the first iteration of each SCF cycle, all eigenvalues of the overlap
matrix is computed. If there is any eigenvalue smaller than illcond tol, the matrix is considered to be ill-conditioned.

24

3) spectrum width and energy gap refer to the width and the gap of the eigenspectrum. Simply use the default values
if there is no better estimate.

4) In all supported broadening schemes, there is a term (ε− EF)/W in the distribution function, where ε is the energy
of an eigenstate, and EF is the Fermi level. The broadening width parameter should be set to W , in the same unit of ε
and EF.

3.5.2 Customizing the ELPA Solver

elsi set elpa solver(handle, elpa solver)

elsi set elpa n single(handle, elpa n single)

elsi set elpa gpu(handle, elpa gpu)

elsi set elpa gpu kernels(handle, elpa gpu kernels)

elsi set elpa autotune(handle, elpa autotune)

Argument Data Type Default Explanation
elpa solver integer 2 1: ELPA 1-stage solver. 2: ELPA 2-stage solver. The latter is

usually faster and more scalable.
elpa n single integer 0 Number of SCF steps using single precision ELPA to solve stan-

dard eigenproblems. See remark 1.
elpa gpu integer 0 If not 0, try to enable GPU-acceleration in ELPA. See remark 2.
elpa gpu kernels integer 0 If not 0, try to enable GPU-acceleration and GPU kernels in

ELPA. See remark 2.
elpa autotune integer 1 If not 0, try to enable auto-tuning of runtime parameters in ELPA.

See remark 3.

Remarks

1) elpa n single: If single precision arithmetic is available in an externally complied ELPA library, it may be enabled
by setting elpa n single to a positive integer, then the standard eigenprolems in the first elpa n single SCF steps will be
solved with single precision. The transformations between generalized eigenproblem and the standard form are always
performed with double precision. Although this keyword accelerates the solution of standard eigenproblems, the overall
SCF convergence may be slower, depending on the physical system and the SCF settings used in the electronic structure
code. This keyword is ignored if single precision calculations are not available, which is the case if the internal version
of ELPA is used, or if an external ELPA has not been complied with single precision support.

2) elpa gpu and elpa gpu kernels: If GPU-acceleration is available in an externally compiled ELPA library, it may be
enabled by setting elpa gpu to a non-zero integer. Note that by setting elpa gpu, the GPU kernels for eigenvector back-
transformation will not be used. To enable the GPU kernels, elpa gpu kernels should be set to a non-zero value. These
two keywords are ignored if GPU-acceleration is not available, which is the case if the internal version of ELPA is used,
or if an external ELPA has not been complied with GPU support.

3) elpa autotune: If auto-tuning of runtime parameters is available in an externally complied ELPA library, it may be
enabled by setting elpa autotune to a nonzero integer. This keyword is ignored if auto-tuning is not available, which is
the case if the internal version of ELPA is used.

3.5.3 Customizing the libOMM Solver

elsi set omm flavor(handle, omm flavor)

elsi set omm n elpa(handle, omm n elpa)

elsi set omm tol(handle, omm tol)

25

Argument Data Type Default Explanation
omm flavor integer 0 Method to perform OMM minimization. See remark 1.
omm n elpa integer 6 Number of SCF steps using ELPA. See remark 2.
omm tol real double 10−12 Convergence tolerance of orbital minimization. See remark 3.

Remarks

1) omm flavor: Allowed choices are 0 for a basic minimization of a generalized eigenproblem and 2 for a Cholesky
factorization of the overlap matrix transforming the generalized eigenproblem to the standard form. Usually 2 (Cholesky)
leads to a faster convergence of the OMM energy functional minimization, at the price of transforming the eigenproblem.
When using sufficiently many steps of ELPA to stabilize the SCF cycle, 0 (basic) is probably a better choice to finish
the remaining SCF cycle. See also remark 2 below.

2) omm n elpa: It has been demonstrated that OMM is optimal at later stages of an SCF cycle where the electronic
structure is closer to its expected local minimum, requiring only one CG iteration to converge the minimization of
the OMM energy functional. Accordingly, it is recommended to use ELPA initially, then switching to libOMM after
omm n elpa SCF steps.

3) omm tol: A large minimization tolerance of course leads to a faster convergence, however unavoidably with a lower
accuracy. omm tol should be tested and chosen to balance the desired accuracy and computation time of the calling
code.

3.5.4 Customizing the PEXSI Solver

elsi set pexsi n pole(handle, pexsi n pole)

elsi set pexsi n mu(handle, pexsi n mu)

elsi set pexsi np per pole(handle, pexsi np per pole)

elsi set pexsi np symbo(handle, pexsi np symbo)

elsi set pexsi temp(handle, pexsi temp)

elsi set pexsi mu min(handle, pexsi mu min)

elsi set pexsi mu max(handle, pexsi mu max)

elsi set pexsi inertia tol(handle, pexsi inertia tol)

elsi set pexsi gap(handle, pexsi gap)

elsi set pexsi delta e(handle, pexsi delta e)

Argument Data Type Default Explanation
pexsi n pole integer 20 Number of poles used by PEXSI. See remark 1.
pexsi n mu integer 2 Number of mu points used by PEXSI. See remark 1.
pexsi np per pole integer - Number of MPI tasks assigned to each mu point. See remark 2.
pexsi np symbo integer 1 Number of MPI tasks for symbolic factorization. See remark 3.
pexsi temp real double 0.002 Temperature. See remark 4.
pexsi mu min real double -10.0 Minimum value of mu. See remark 5.
pexsi mu max real double 10.0 Maximum value of mu. See remark 5.
pexsi inertia tol real double 0.05 Stopping criterion of inertia counting. See remark 5.
pexsi gap real double 0.0 Energy gap. Deprecated; use elsi set energy gap instead. See

remark 6.
pexsi delta e real double 10.0 Width of eigenspectrum. Deprecated; use elsi set spectrum width

instead.

26

Remarks

1) In PEXSI, 20 poles are usually sufficient to get an accuracy that is comparable with the result obtained from
diagonalization. The chemical potential is determined by performing Fermi operator expansion at several chemical
potential values (referred to as “points” by PEXSI developers) in an SCF step, then interpolating the results at all points
to the final answer. The pexsi n mu parameter controls the number of chemical potential “points” to be evaluated. 2
points followed by a simple linear interpolation often yield reasonable results.

In short, we recommend pexsi n pole = 20 and pexsi n mu = 2.

2) pexsi np per pole: PEXSI has, by construction, a 3-level parallelism: the 1st level independently handles all the poles
in parallel; within each pole, the 2nd level evaluates the Fermi operator at all the chemical potential points in parallel;
finally, within each point, parallel selected inversion is performed as the 3rd level. The value of pexsi np per pole is
the number of MPI tasks assigned to a single chemical potential point, for the parallel selected inversion at that point.
Ideally, the total number of MPI tasks should be pexsi np per pole × pexsi n mu × pexsi n pole, i.e., all the three levels
of parallelism are fully exploited. In case that this is not feasible, PEXSI can also process the poles in serial, whereas
all the chemical potential points must be evaluated simultaneously. The user should make sure that the total number of
MPI tasks is divisible by the product of the number of MPI tasks per pole and the number of points. The code will stop
if this requirement is not fulfilled.

When using the BLACS DENSE or SIESTA CSC matrix formats, pexsi np per pole is automatically determined to
balance the three levels of parallelism in PEXSI. Input and output matrices should be distributed across all MPI tasks
in either a 2D block-cyclic distribution (BLACS DENSE) or a 1D block-cyclic distribution (SIESTA CSC).

Note that when using the PEXSI CSC matrix format together with the PEXSI solver, input and output matrices should
be distributed among the first pexsi np per pole MPI tasks (not all the MPI tasks) in a 1D block distribution. The
block size of the distribution must be floor(N basis/N procs), where floor(x) is the greatest integer less than or equal to
x, N basis and N procs are the number of basis functions and the number of MPI tasks, respectively.

when using the PEXSI CSC matrix format with the ELPA, libOMM, or SLEPc-SIPs solver, input and output matrices
should be distributed across all the MPI tasks in a 1D block distribution. Again, the block size of the distribution must
be floor(N basis/N procs).

3) pexsi np symbo: Unless there is a memory bottleneck, using 1 MPI task for matrix reordering and symbolic factor-
ization is favorable. When running in serial, the matrix reordering in PT-SCOTCH or ParMETIS introduces a minimal
number of “fill-ins” to the factorized matrices. Using more MPI tasks introduces more fill-ins. As the matrix reordering
and symbolic factorization are performed only once per SCF cycle (with a fixed overlap matrix), using 1 MPI task
should not affect the overall timing too much. On the other hand, more fill-ins lead to slower numerical factorization
in every SCF step. In addition, the number of MPI tasks used for matrix reordering and symbolic factorization cannot
be too large. Otherwise, the symbolic factorization may fail. Therefore, the default number of MPI tasks for symbolic
factorization is 1. It is worth testing and increasing this number for large-scale calculations.

4) pexsi temp: This value corresponds to the 1/kBT term (not T) in the Fermi-Dirac distribution function.

5) The chemical potential determination in PEXSI relies on inertia counting to narrow down the chemical potential
searching interval in the first few SCF steps. The pexsi inertia tol parameter controls the stopping criterion of the
inertia counting procedure. With a small interval obtained from the inertia counting step, PEXSI then selects a number
of points in this interval to perform Fermi operator calculations, based on which a final chemical potential will be
determined. The trick of this algorithm is that the chemical potential interval of the current SCF step can be used as a
descent guess in the next SCF step. Therefore, the mechanism to choose input values for pexsi mu min and pexsi mu max
is two-fold. For the first SCF iteration, they should be set to safe values that guarantee the true chemical potential lies
in this interval. Then, for the nth SCF step, pexsi mu min should be set to (mun-1min + ∆Vmin), pexsi mu max should be
set to (mun-1max + ∆Vmax). Here, mun-1min and mun-1max are the lower bound and the upper bound of the chemical potential
that are determined by PEXSI in the (n-1)th SCF step. They can be retrieved by calling elsi get pexsi mu min and
elsi get pexsi mu max, respectively (see 3.6.2. Suppose the effective potential (Hartree potential, exchange-correlation
potential, and external potential) is stored in an array V , whose dimension is the number of grid points. From one SCF
iteration to the next, ∆V denotes the potential change, and ∆Vmin and ∆Vmax are the minimum and maximum values
in the array ∆V , respectively. The whole process is summarized in the following pseudo-code.

27

mu_min = -10.0

mu_max = 10.0

delta_V_min = 0.0

delta_v_max = 0.0

do SCF cycle

Update Hamiltonian

call elsi_set_pexsi_mu_min (eh, mu_min + delta_V_min)

call elsi_set_pexsi_mu_max (eh, mu_max + delta_V_max)

call elsi_dm_{real|complex} (eh, ham, ovlp, dm, bs_energy)

call elsi_get_pexsi_mu_min (eh, mu_min)

call elsi_get_pexsi_mu_max (eh, mu_max)

Update electron density

Update potential

delta_V_min = minval (V_new - V_old)

delta_V_max = maxval (V_new - V_old)

Check SCF convergence

end do

6) pexsi gap: Note that the PEXSI method does not require an energy gap. If no knowledge is available, the default
value usually works.

3.5.5 Customizing the SLEPc-SIPs Solver

elsi set sips ev min(handle, ev min)

elsi set sips ev max(handle, ev max)

elsi set sips n elpa(handle, sips n elpa)

elsi set sips n slice(handle, sips n slice)

elsi set sips interval(handle, sips lower, sips upper)

Argument Data Type Default Explanation
ev min real double -2.0 Lower bound of eigenspectrum. See remark 1.
ev max real double 2.0 Upper bound of eigenspectrum. See remark 1.
sips n elpa integer 0 Number of SCF steps using ELPA. See remark 2.
sips n slice integer 1 Number of slices. See remark 3.
sips lower real double -2.0 Deprecated; use elsi set sips ev min instead.
sips upper real double 2.0 Deprecated; use elsi set sips ev max instead.

Remarks

1) ev min and ev max: SLEPc-SIPs relies on some inertia counting steps to estimate the lower and upper bounds of the
spectrum. Only eigenvalues within this interval, and their associated eigenvectors, will be solved. The inertia-counting-
based eigenvalue searching starts from the interval determined by ev min and ev max. Depending on the results of
inertia counting, this interval may expand or shrink to make sure that the 1st to the n stateth eigenvalues are all within
this interval. If a good estimate of the lower or upper bounds of the eigenspectrum is available, it should be set by
elsi set sips ev min or elsi set sips ev max.

28

2) sips n elpa: The performance of SLEPc-SIPs mainly depends on the load balance across slices. Optimal performance is
expected if the desired eigenvalues are evenly distributed across slices. In an SCF calculation, eigenvalues obtained in the
current SCF step can be used as an approximated distribution of eigenvalues in the next SCF step. This approximation
should become better as the SCF cycle approaches its convergence. On the other hand, at the beginning of an SCF
cycle, the load balance is only coarsely checked by inertia calculations. Using the direct eigensolver ELPA in the first
sips n elpa SCF steps can circumvent the load imbalance of spectrum slicing in the initial SCF steps.

3) sips n slice: SLEPc-SIPs partitions the eigenspectrum into slices and solves the slices in parallel. The sips n slice
parameter controls the number of slices to use in SLEPc-SIPs. The default value, 1, should always work, but by no
means leads to the optimal performance of the solver. There are some general rules to set this parameter. Firstly, as
a requirement of the SLEPc library, the total number of MPI tasks must by divisible by sips n slice. Secondly, setting
sips n slice to be equal to the number of computing nodes (not MPI tasks) usually yields better performance, as the
communication between nodes is minimized in this case. The optimal value of sips n slice depends on the actual problem
as well as the computing hardware.

3.5.6 Customizing the NTPoly Solver

elsi set ntpoly method(handle, ntpoly method)

elsi set ntpoly filter(handle, ntpoly filter)

elsi set ntpoly tol(handle, ntpoly tol)

Argument Data Type Default Explanation
ntpoly method integer 2 Method to perform density matrix purification. See remark 1.
ntpoly filter real double 10−15 When performing sparse matrix multiplications, values below this

filter will be discarded. See remark 2.
ntpoly tol real double 10−8 Convergence tolerance of purification. See remark 2.

Remarks

1) ntpoly method: Allowed choices are 0 for the canonical purification, 1 for the trace correcting purification, 2 for the
4th order trace resetting purification, and 3 for the generalized hole-particle canonical purification.

2) ntpoly filter and ntpoly tol control the accuracy and computational cost of the density matrix purification methods.
Tight choices of ntpoly filter and ntpoly tol, e.g. the default values here, lead to highly accurate results that are
comparable to the results obtained from diagonalization. However, linear scaling can only be achieved with a relatively
large ntpoly filter such as 10−6. Correspondingly, ntpoly tol may be set to 10−3. Note that the purification may not
converge if ntpoly filter is too large relative to ntpoly tol. Setting ntpoly filter to be ≤ 10−3× ntpoly tol is safe in most
cases.

3.6 Getting Additional Results from ELSI

In 3.3 and 3.4, the interfaces to compute and return the eigensolutions and the density matrices have been introduced.
Internally, ELSI and the solvers perform additional calculations whose results may only be useful at a certain stage of
an SCF calculation. One example is the energy-weighted density matrix that is employed to evaluate the Pulay forces
during a geometry optimization calculation. The subroutines introduced in the following subsections are used to retrieve
such additional results from ELSI.

3.6.1 Getting Results from the ELSI Interface

In all the subroutines listed below, the first argument (input and output) is an elsi handle. The second argument
(output) of each subroutine is the name of parameter to get.

elsi get initialized(handle, handle init)

29

elsi get version(handle, major, minor, patch)

elsi get datestamp(handle, date stamp)

elsi get n illcond(handle, n illcond)

elsi get mu(handle, mu)

elsi get entropy(handle, ts)

elsi get edm real(handle, edm real)

elsi get edm complex(handle, edm complex)

elsi get edm real sparse(handle, edm real sparse)

elsi get edm complex sparse(handle, edm complex sparse)

elsi get n sing(handle, n sing)

Argument Data Type Explanation
handle init integer 0 if the ELSI handle has not been initialized; 1 if initialized.
major integer Major version number.
minor integer Minor version number.
patch integer Patch level.
date stamp integer Date stamp of ELSI (yyyymmdd).
n illcond integer Number of eigenvalues of the overlap matrix that are

smaller than the ill-conditioning tolerance. See 3.5.1.
mu real double Chemical potential. See remark 1.
ts real double Entropy. See remark 1.
edm real real double, rank-2 array Real energy-weighted density matrix in 2D block-cyclic

dense format. See remark 2.
edm complex complex double, rank-2 array Complex energy-weighted density matrix in 2D block-cyclic

dense format. See remark 2.
edm real sparse real double, rank-1 array Non-zero values of the real density matrix in 1D block CSC

format. See remark 2.
edm complex sparse complex double, rank-1 array Non-zero values of the complex density matrix in 1D block

CSC format. See remark 2.
n sing integer Deprecated; use elsi get n illcond instead.

Remarks

1) In ELSI, the chemical potential will only be available if one of the density matrix solver interfaces has been called,
with ELPA, PEXSI, or NTPoly being the chosen solver. The chemical potential can be retrieved by calling elsi get mu.
The entropy will only be available if one of the density matrix solver interfaces has been called with ELPA being the
chosen solver. The user should avoid calling the subroutine when the chemical potential or the entropy is not ready.

2) In general, the energy-weighted density matrix is only needed in a late stage of an SCF cycle to evaluate forces. It
is, therefore, not calculated when any of the density matrix solver interface is called. When the energy-weighted density
matrix is actually needed, it can be requested by calling the elsi get edm subroutines. Note that these subroutines all have
the requirement that the corresponding elsi dm subroutine must have been invoked. For instance, elsi get edm real sparse
only makes sense if elsi dm real sparse has been successfully executed.

3.6.2 Getting Results from the PEXSI Solver

elsi get pexsi mu min(handle, pexsi mu min)

elsi get pexsi mu max(handle, pexsi mu max)

30

Argument Data Type Explanation
pexsi mu min real double Minimum value of mu. See remark 1.
pexsi mu max real double Maximum value of mu. See remark 1.

Remarks

1) Please refer to the 5th remark in 3.5.4 for the chemical potential determination algorithm in PEXSI and ELSI.

3.6.3 Extrapolation of wavefunction and density matrix

In a single point total energy calculation, a simple way to construct an initial guess of the electron density is using the
superposition of free atom densities. In geometry calculations, the initial guess in the (n+1)th geometry step can be
made better than free atom superposition, by reusing the wavefunctions or density matrix calculated in the nth geometry
step. However, due to the movement of atoms and localized basis functions around them, wavefunctions obtained in the
nth geometry step are no longer orthonormalized in the (n+1)th geometry step. Similarly, density matrix from the nth

geometry step does not satisfy the conditions in Eq. 1.20 with respect to the new overlap matrix.

The following subroutines orthonormalize eigenvectors (coefficients of wavefunctions) in the nth geometry step with
respect to the overlap matrix in the (n+1)th geometry step with a Gram-Schmidt algorithm.

elsi orthonormalize ev real(handle, ovlp, evec)

Argument Data Type in/out Explanation
handle type(elsi handle) inout Handle to ELSI.
ovlp real double, rank-2 array in Real overlap matrix in 2D block-cyclic dense format.
evec real double, rank-2 array inout Real eigenvectors in 2D block-cyclic dense format.

elsi orthonormalize ev complex(handle, ovlp, evec)

Argument Data Type in/out Explanation
handle type(elsi handle) inout Handle to ELSI.
ovlp complex double, rank-2 array in Complex overlap matrix in 2D block-cyclic dense for-

mat.
evec complex double, rank-2 array inout Complex eigenvectors in 2D block-cyclic dense format.

The following subroutines extrapolate density matrix in the nth geometry step to satisfy conditions 1.20 with respect to
the overlap matrix in the (n+1)th geometry step.

elsi extrapolate dm real(handle, ovlp, dm)

Argument Data Type in/out Explanation
handle type(elsi handle) inout Handle to ELSI.
ovlp real double, rank-2 array inout Real overlap matrix in 2D block-cyclic dense format.

See remark 1.
dm real double, rank-2 array inout Real density matrix in 2D block-cyclic dense format. See

remark 2.

elsi extrapolate dm complex(handle, ovlp, dm)

Argument Data Type in/out Explanation
handle type(elsi handle) inout Handle to ELSI.
ovlp complex double, rank-2 array inout Complex overlap matrix in 2D block-cyclic dense for-

mat. See remark 1.
dm complex double, rank-2 array inout Complex density matrix in 2D block-cyclic dense for-

mat. See remark 2.

31

Remarks

1) ovlp: This should be the overlap matrix in the (n+1)th geometry step. elsi set save ovlp must have been called to
store the overlap matrix in the nth geometry step internally. If ELPA is the chosen solver, ovlp will be overridden with
its Cholesky factorization, which will be reused by subsequent calls to the solver interfaces.

2) dm: Input should be the density matrix in the nth geometry step. Output is the extrapolated density matrix.

3.7 Parallel Matrix I/O

To test the solvers in ELSI, it is convenient to use matrices generated from actual electronic structure calculations.
There exist a number of libraries invented for high-performance parallel I/O that are particularly capable of reading and
writing a large amount of data with hierarchical structures and complex metadata. However, the I/O task in ELSI is very
simple in terms of the complexity of the data to manipulate. The data structure is simply arrays that represent matrices,
with a few integers to define the dimension of the matrices. In order to circumvent the unavoidable development and
performance overhead associated with a high level I/O library, the parallel I/O functionality defined in the MPI standard
is directly used to read and write matrices in ELSI.

When ELSI runs in parallel with multiple MPI tasks, the matrices are distributed across tasks. The choice of writing
the distributed matrices into Nprocs separate files, where Nprocs is the number of MPI tasks, is not promising due to the
difficulty of managing and post-processing a large number of files, especially with a different number of MPI tasks. The
implementation of matrix I/O in ELSI adopts collective MPI I/O routines to write data to (read data from) a single
binary file, as if the data was gathered onto a single MPI task then written to one file (read from one file by one MPI
task then scattered to all tasks). The optimal I/O performance, both with MPI I/O and in general, is often obtained by
making large and contiguous requests to access the file system, rather than small, non-contiguous, or random requests.
Therefore, before being written to file, matrices are always redistributed to a 1D block distribution. This guarantees
that each MPI task writes a contiguous trunk of data to a contiguous piece of file. Similarly, matrices read from file are
in a 1D block distribution, and can be redistributed automatically if needed.

A matrix is always stored in the CSC format in an ELSI matrix file. A dense matrix is automatically converted to the
CSC format before writing to file, and can be converted back after reading from file.

Next, we present the API for parallel matrix I/O.

3.7.1 Setting Up Matrix I/O

An elsi rw handle must be initialized via the elsi init rw subroutine before any other matrix I/O subroutine may be
called. This elsi rw handle is subsequently passed to all other matrix I/O subroutine calls.

elsi init rw(handle, task, parallel mode, n basis, n electron)

Argument Data Type in/out Explanation
handle type(elsi rw handle) out Handle to matrix I/O instance.
task integer in Matrix I/O task to perform. Accepted values are: 0

(READ MATRIX) and 1(WRITE MATRIX).
parallel mode integer in Parallelization mode. The only accepted value is 1

(MULTI PROC) for now.
n electron real double in Number of electrons. See remark 1.
n basis integer in Number of basis functions, i.e. global size of matrix.

Remarks

1) n electron: Matrices written out with ELSI matrix I/O are usually from actual electronic structure calculations.
Having the number of electrons available makes the matrix file useful for testing density matrix solvers such as PEXSI.
Therefore, it is recommended to set the correct number of electrons when initializing an matrix I/O handle, although
setting it to an arbitrary number will not affect the matrix I/O operation.

32

2) n basis: This can be set to an arbitrary value if task is 0 (READ MATRIX). Its value will be read from file when
calling elsi read mat dim or elsi read mat dim sparse.

The MPI communicator which encloses the MPI tasks to perform the matrix I/O operation needs to be passed into ELSI
via the elsi set rw mpi subroutine.

elsi set rw mpi(handle, mpi comm)

Argument Data Type in/out Explanation
handle type(elsi rw handle) inout Handle to matrix I/O instance.
mpi comm integer in MPI communicator.

When reading or writing a dense matrix, BLACS parameters are passed into ELSI via the elsi set rw blacs subroutine.

elsi set rw blacs(handle, blacs ctxt, block size)

Argument Data Type in/out Explanation
handle type(elsi rw handle) inout Handle to matrix I/O instance.
blacs ctxt integer in BLACS context.
block size integer in Block size of the 2D block-cyclic distribution, specifying

both row and column directions.

When writing a sparse matrix, its dimensions are passed into ELSI via the elsi set rw csc subroutine. The only sparse
matrix format currently supported by ELSI matrix I/O is the PEXSI CSC format. When reading a sparse matrix, there
is no need to call this subroutine. The relevant parameters will be read from file when calling elsi read mat dim or
elsi read mat dim sparse.

elsi set rw csc(handle, global nnz, local nnz, local col)

Argument Data Type in/out Explanation
handle type(elsi rw handle) inout Handle to matrix I/O instance.
global nnz integer in Global number of non-zeros.
local nnz integer in Local number of non-zeros.
local col integer in Local number of matrix columns.

When a matrix I/O instance is no longer needed, its associated handle should be cleaned up by calling elsi finalize rw.

elsi finalize rw(handle)

Argument Data Type in/out Explanation
handle type(elsi rw handle) inout Handle to matrix I/O instance.

3.7.2 Writing Matrices

The following two subroutines write a dense matrix to file. Before writing a dense matrix, MPI and BLACS should be
set up properly using elsi set rw mpi and elsi set rw blacs.

elsi write mat real(handle, filename, mat)

Argument Data Type in/out Explanation
handle type(elsi rw handle) in Handle to matrix I/O instance.
filename string in Name of file to write.
mat real double, rank-2 array in Local matrix in 2D block-cyclic dense format.

33

elsi write mat complex(handle, filename, mat)

Argument Data Type in/out Explanation
handle type(elsi rw handle) in Handle to matrix I/O instance.
filename string in Name of file to write.
mat complex double, rank-2 array in Local matrix in 2D block-cyclic dense format.

The following two subroutines write a sparse matrix to file. Before writing a sparse matrix, MPI and CSC matrix format
should be set up properly using elsi set rw mpi and elsi set rw csc.

elsi write mat real sparse(handle, filename, row idx, col ptr, mat)

Argument Data Type in/out Explanation
handle type(elsi rw handle) in Handle to matrix I/O instance.
filename string in Name of file to write.
row idx integer, rank-1 array in Local row index array.
col ptr integer, rank-1 array in Local column pointer array.
mat real double, rank-1 array in Local non-zero values in 1D block CSC format.

elsi write mat complex sparse(handle, filename, row idx, col ptr, mat)

Argument Data Type in/out Explanation
handle type(elsi rw handle) in Handle to matrix I/O instance.
filename string in Name of file to write.
row idx integer, rank-1 array in Local row index array.
col ptr integer, rank-1 array in Local column pointer array.
mat complex double, rank-1 array in Local non-zero values in 1D block CSC format.

When writing a dense matrix to file, values smaller than a predefined threshold will be discarded. The default value of
this threshold is 10−15. It can be overridden via elsi set rw zero def.

elsi set rw zero def(handle, zero def)

Argument Data Type in/out Explanation
handle type(elsi rw handle) inout Handle to matrix I/O instance.
zero def real double in When writing a dense matrix to file, values below this

threshold will be discarded.

An array of eight user-defined integers can be optionally set up via elsi set rw header. This array will be attached
to the matrix file written out by the above subroutines. When reading a matrix file, this array may be retrieved via
elsi get rw header.

elsi set rw header(handle, header)

Argument Data Type in/out Explanation
handle type(elsi rw handle) inout Handle to matrix I/O instance.
header integer, rank-1 array in An array of eight integers.

3.7.3 Reading Matrices

The following subroutines read a dense or sparse matrix from file. While writing a matrix to file can be done in one
step, it is easier to read a matrix from file in two steps, i.e., first read the dimension of the matrix and allocate memory
accordingly, then read the actual data of the matrix.

34

The following three subroutines read a dense matrix from file. Before reading a dense matrix, MPI and BLACS should be
set up properly using elsi set rw mpi and elsi set rw blacs. elsi read mat dim is used to read the dimension of a matrix,
including the number of electrons in the physical system (for testing purpose), the global size of the matrix, and the
local size of the matrix. Memory needs to be allocated according to the return values of local row and local col. Then
elsi read mat real or elsi read mat complex may be called to read a real or complex matrix, respectively.

elsi read mat dim(handle, filename, n electron, n basis, local row, local col)

Argument Data Type in/out Explanation
handle type(elsi rw handle) inout Handle to matrix I/O instance.
filename string in Name of file to read.
n electron real double out Number of electrons.
n basis integer out Number of basis functions, i.e. global size of matrix.
local row integer out Local number of matrix rows.
local col integer out Local number of matrix columns.

elsi read mat real(handle, filename, mat)

Argument Data Type in/out Explanation
handle type(elsi rw handle) inout Handle to matrix I/O instance.
filename string in Name of file to read.
mat real double, rank-2 array out Local matrix in 2D block-cyclic distribution.

elsi read mat complex(handle, filename, mat)

Argument Data Type in/out Explanation
handle type(elsi rw handle) inout Handle to matrix I/O instance.
filename string in Name of file to read.
mat complex double, rank-2 array out Local matrix in 2D block-cyclic distribution.

The following three subroutines read a sparse matrix from file. Before reading a sparse matrix, MPI should be set up
properly using elsi set rw mpi. elsi read mat dim sparse is used to read the dimension of a matrix, including the number
of electrons in the physical system (for testing purpose), the global size of the matrix, and the local size of the matrix.
Memory needs to be allocated according to the return values of local nnz and local col. Then elsi read mat real sparse
or elsi read mat complex sparse may be called to read a real or complex matrix, respectively.

elsi read mat dim sparse(handle, filename, n electron, n basis, global nnz, local nnz, local col)

Argument Data Type in/out Explanation
handle type(elsi rw handle) inout Handle to matrix I/O instance.
filename string in Name of file to read.
n electron real double out Number of electrons.
n basis integer out Number of basis functions, i.e. global size of matrix.
global nnz integer out Global number of non-zeros.
local nnz integer out Local number of non-zeros.
local col integer out Local number of matrix columns.

elsi read mat real sparse(handle, filename, row idx, col ptr, mat)

Argument Data Type in/out Explanation
handle type(elsi rw handle) inout Handle to matrix I/O instance.
filename string in Name of file to read.
row idx integer, rank-1 array out Local row index array.
col ptr integer, rank-1 array out Local column pointer array.
mat real double, rank-1 array out Local non-zero values in 1D block CSC format.

35

elsi read mat complex sparse(handle, filename, row idx, col ptr, mat)

Argument Data Type in/out Explanation
handle type(elsi rw handle) inout Handle to matrix I/O instance.
filename string in Name of file to read.
row idx integer, rank-1 array out Local row index array.
col ptr integer, rank-1 array out Local column pointer array.
mat complex double, rank-1 array out Local non-zero values in 1D block CSC format.

An array of eight user-defined integers can be optionally set up via elsi set rw header. This array will be attached
to the matrix file written out by the above subroutines. When reading a matrix file, this array may be retrieved via
elsi get rw header.

elsi get rw header(handle, header)

Argument Data Type in/out Explanation
handle type(elsi rw handle) inout Handle to matrix I/O instance.
header integer, rank-1 array out An array of eight integers.

3.8 Example Pseudo-Code

Typical workflow of ELSI within an electronic structure code is demonstrated by the following pseudo-code.

2D Block-Cyclic Distributed Dense Matrix + ELSI Eigensolver Interface

SCF initialize

call elsi_init (eh, ELPA, MULTI_PROC, BLACS_DENSE, n_basis, n_electron, n_state)

call elsi_set_mpi (eh, mpi_comm)

call elsi_set_blacs (eh, blacs_ctxt, block_size)

do SCF cycle

Update Hamiltonian

call elsi_ev_{real|complex} (eh, ham, ovlp, eval, evec)

Update electron density

Check SCF convergence

end do

call elsi_finalize(eh)

36

1D Block Distributed CSC Sparse Matrix + ELSI Eigensolver Interface

SCF initialize

call elsi_init (eh, ELPA, MULTI_PROC, PEXSI_CSC, n_basis, n_electron, n_state)

call elsi_set_mpi (eh, mpi_comm)

call elsi_set_blacs (eh, blacs_ctxt, block_size)

call elsi_set_csc (eh, global_nnz, local_nnz, local_col, row_idx, col_ptr)

do SCF cycle

Update Hamiltonian

call elsi_ev_{real|complex}_sparse (eh, ham, ovlp, eval, evec)

Update electron density

Check SCF convergence

end do

call elsi_finalize(eh)

Remarks

1) Eigenvectors are returned in the BLACS DENSE format, which is required to be properly set up.

1D Block-Cyclic Distributed CSC Sparse Matrix + ELSI Eigensolver Interface

SCF initialize

call elsi_init (eh, ELPA, MULTI_PROC, SIESTA_CSC, n_basis, n_electron, n_state)

call elsi_set_mpi (eh, mpi_comm)

call elsi_set_blacs (eh, blacs_ctxt, block_size)

call elsi_set_csc (eh, global_nnz, local_nnz, local_col, row_idx, col_ptr)

call elsi_set_csc_blk (eh, block_size_csc)

do SCF cycle

Update Hamiltonian

call elsi_ev_{real|complex}_sparse (eh, ham, ovlp, eval, evec)

Update electron density

Check SCF convergence

end do

call elsi_finalize(eh)

Remarks

1) Eigenvectors are returned in the BLACS DENSE format, which is required to be properly set up.

37

Arbitrarily Distributed COO Sparse Matrix + ELSI Eigensolver Interface

SCF initialize

call elsi_init (eh, ELPA, MULTI_PROC, GENERIC_COO, n_basis, n_electron, n_state)

call elsi_set_mpi (eh, mpi_comm)

call elsi_set_blacs (eh, blacs_ctxt, block_size)

call elsi_set_coo (eh, global_nnz, local_nnz, row_idx, col_idx)

do SCF cycle

Update Hamiltonian

call elsi_ev_{real|complex}_sparse (eh, ham, ovlp, eval, evec)

Update electron density

Check SCF convergence

end do

call elsi_finalize(eh)

Remarks

1) Eigenvectors are returned in the BLACS DENSE format, which is required to be properly set up.

2D Block-Cyclic Distributed Dense Matrix + ELSI Density Matrix Interface

SCF initialize

call elsi_init (eh, OMM, MULTI_PROC, BLACS_DENSE, n_basis, n_electron, n_state)

call elsi_set_mpi (eh, mpi_comm)

call elsi_set_blacs (eh, blacs_ctxt, block_size)

do SCF cycle

Update Hamiltonian

call elsi_dm_{real|complex} (eh, ham, ovlp, dm, bs_energy)

Update electron density

Check SCF convergence

end do

call elsi_finalize(eh)

38

1D Block Distributed CSC Sparse Matrix + ELSI Density Matrix Interface

SCF initialize

call elsi_init (eh, PEXSI, MULTI_PROC, PEXSI_CSC, n_basis, n_electron, n_state)

call elsi_set_mpi (eh, mpi_comm)

call elsi_set_csc (eh, global_nnz, local_nnz, local_col, row_idx, col_ptr)

do SCF cycle

Update Hamiltonian

call elsi_dm_{real|complex}_sparse (eh, ham, ovlp, dm, bs_energy)

call elsi_get_edm_{real|complex}_sparse (eh, edm)

Update electron density

Check SCF convergence

end do

call elsi_finalize(eh)

Remarks

1) Refer to the 5th remark in 3.5.4 for the chemical potential determination algorithm in PEXSI.

1D Block-Cyclic Distributed CSC Sparse Matrix + ELSI Density Matrix Interface

SCF initialize

call elsi_init (eh, PEXSI, MULTI_PROC, SIESTA_CSC, n_basis, n_electron, n_state)

call elsi_set_mpi (eh, mpi_comm)

call elsi_set_csc (eh, global_nnz, local_nnz, local_col, row_idx, col_ptr)

call elsi_set_csc_blk (eh, block_size)

do SCF cycle

Update Hamiltonian

call elsi_dm_{real|complex}_sparse (eh, ham, ovlp, dm, bs_energy)

call elsi_get_edm_{real|complex}_sparse (eh, edm)

Update electron density

Check SCF convergence

end do

call elsi_finalize(eh)

Remarks

1) Refer to the 5th remark in 3.5.4 for the chemical potential determination algorithm in PEXSI.

39

Arbitrarily Distributed COO Sparse Matrix + ELSI Density Matrix Interface

SCF initialize

call elsi_init (eh, PEXSI, MULTI_PROC, GENERIC COO, n_basis, n_electron, n_state)

call elsi_set_mpi (eh, mpi_comm)

call elsi_set_coo (eh, global_nnz, local_nnz, row_idx, col_idx)

do SCF cycle

Update Hamiltonian

call elsi_dm_{real|complex}_sparse (eh, ham, ovlp, dm, bs_energy)

call elsi_get_edm_{real|complex}_sparse (eh, edm)

Update electron density

Check SCF convergence

end do

call elsi_finalize(eh)

Remarks

1) Refer to the 5th remark in 3.5.4 for the chemical potential determination algorithm in PEXSI.

Multiple k-points Calculations

SCF initialize

call elsi_init (eh, NTPOLY, MULTI_PROC, BLACS_DENSE, n_basis, n_electron, n_state)

call elsi_set_mpi (eh, mpi_comm)

call elsi_set_blacs (eh, blacs_ctxt, block_size)

call elsi_set_kpoint (eh, n_kpt, i_kpt, i_wt)

call elsi_set_mpi_global (eh, mpi_comm_global)

do SCF cycle

Update Hamiltonian

call elsi_dm_{real|complex} (eh, ham, ovlp, dm, bs_energy)

call elsi_get_edm_{real|complex} (eh, edm)

Update electron density

Check SCF convergence

end do

call elsi_finalize(eh)

Remarks

1) When there are multiple k -points, there is no change in the way ELSI solver interfaces are called.

2) The electronic structure code needs to assemble the real-space density from the density matrices returned for the
k -points. The returned band structure energy, however, is already summed over all k -points with respect to the weight
of each k -point. Refer to 3.2.4 for more information.

3) Spin-polarized calculations may be set up similarly.

40

Geometry Relaxation Calculations

SCF initialize

call elsi_init (eh, ...)

call elsi_set_* (eh, ...)

do geometry

do SCF cycle

Update Hamiltonian

call elsi_{ev|dm}_{real|complex} (eh, ham, ovlp, ...)

Update electron density

Check SCF convergence

end do

Update geometry (overlap)

call elsi_reinit (eh)

end do

call elsi_finalize(eh)

3.9 C/C++ Interface

ELSI is written in Fortran. A C interface around the core Fortran code is provided, which can be called from a C
or C++ program. Each C wrapper function corresponds to a Fortran subroutine, where we have prefixed the original
Fortran subroutine name with c for clarity and consistency. Argument lists are identical to the associated native Fortran
subroutine. For the complete definition of the C interface, the user is encouraged to look at the elsi.h header file directly.

41

Bibliography

[1] W. Kohn and L.J. Sham, Self-consistent equations including exchange and correlation effects, Physical Review, 140,
1133-1138 (1965).

[2] T. Auckenthaler et al., Parallel solution of partial symmetric eigenvalue problems from electronic structure calcula-
tions, Parallel Computing, 37, 783-794 (2011).

[3] A. Marek et al., The ELPA library: Scalable parallel eigenvalue solutions for electronic structure theory and compu-
tational science, Journal of Physics: Condensed Matter, 26, 213201 (2014).

[4] F. Corsetti, The orbital minimization method for electronic structure calculations with finite-range atomic basis sets,
Computer Physics Communications, 185, 873-883 (2014).

[5] L. Lin et al., Fast algorithm for extracting the diagonal of the inverse matrix with application to the electronic
structure analysis of metallic systems, Communications in Mathematical Sciences, 7, 755-777 (2009).

[6] L. Lin et al., Accelerating atomic orbital-based electronic structure calculation via pole expansion and selected
inversion, Journal of Physics: Condensed Matter, 25, 295501 (2013).

[7] V. Hernandez et al., SLEPc: A scalable and flexible toolkit for the solution of eigenvalue problems, ACM Transactions
on Mathematical Software, 31, 351-362 (2005).

[8] M. Keceli et al., Shift-and-invert parallel spectral transformation eigensolver: Massively parallel performance for
density-functional based tight-binding, Journal of Computational Chemistry, 37, 448-459 (2016).

[9] W. Dawson and T. Nakajima, Massively parallel sparse matrix function calculations with NTPoly, Computer Physics
Communications, 225, 154 (2018).

[10] B. Aradi et al., DFTB+, a sparse matrix-based implementation of the DFTB method, Journal of Physical Chemistry
A, 111, 5678 (2007).

[11] W. Hu et al., DGDFT: A massively parallel method for large scale density functional theory calculations, The
Journal of Chemical Physics, 143, 124110 (2015).

[12] V. Blum et al., Ab initio molecular simulations with numeric atom-centered orbitals, Computer Physics Communi-
cations, 180, 2175-2196 (2009).

[13] J.M. Soler et al., The SIESTA method for ab initio order-N materials simulation, Journal of Physics: Condensed
Matter, 14, 2745-2779 (2002).

[14] A.H.R. Palser and D.E. Manolopoulos, Canonical purification of the density matrix in electronic-structure theory,
Physical Review B, 58, 12704-12711 (1998).

[15] A.M.N. Niklasson, Expansion algorithm for the density matrix, Physical Review B, 66, 155115 (2002).

[16] L.A. Truflandier et al., Communication: Generalized canonical purification for density matrix minimization, The
Journal of Chemical Physics, 144, 091102 (2016).

[17] V. Yu et al., ELSI: A unified software interface for Kohn-Sham electronic structure solvers, Computer Physics
Communications, 222, 267-285 (2018).

42

License and Copyright

ELSI interface software is licensed under the 3-clause BSD license:

Copyright (c) 2015-2019, the ELSI team.

All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted

provided that the following conditions are met:

1) Redistributions of source code must retain the above copyright notice, this list of

conditions and the following disclaimer.

2) Redistributions in binary form must reproduce the above copyright notice, this list of

conditions and the following disclaimer in the documentation and/or other materials

provided with the distribution.

3) Neither the name of the "ELectronic Structure Infrastructure (ELSI)" project nor the names

of its contributors may be used to endorse or promote products derived from this software

without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR

IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY

AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL COPYRIGHT HOLDER BE

LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES

(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA,

OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN

CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT

OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

The source code of ELPA 2016.11.001 (LGPL3), libOMM (BSD2), NTPoly 2.2 (MIT), PEXSI 1.2.0 (BSD3), PT-
SCOTCH 6.0.0 (CeCILL-C), and SuperLU DIST 6.1.1 (BSD3) are redistributed through this version of ELSI. Individual
license of each library can be found in the corresponding subfolder.

43

	Introduction
	The Cubic Wall of Kohn-Sham Density-Functional Theory
	ELSI, the ELectronic Structure Infrastructure
	Kohn-Sham Solver Libraries Supported by ELSI
	ELPA
	libOMM
	PEXSI
	SLEPc-SIPs
	NTPoly

	Citing ELSI
	Acknowledgments

	Installation of ELSI
	Overview
	Prerequisites
	CMake Basics
	Configuration
	Compilers
	Solvers
	Build Targets
	List of All Configure Options
	``Toolchain'' Files

	Importing ELSI into Third-Party Code Projects
	Linking against ELSI: CMake
	Linking against ELSI: Makefile
	Using ELSI

	The ELSI API
	Overview of the ELSI API
	Setting Up ELSI
	Initializing ELSI
	Setting Up MPI
	Setting Up Matrix Formats
	Setting Up Multiple k-points and/or Spin Channels
	Reinitializaing ELSI
	Finalizing ELSI

	Solving Eigenvalues and Eigenvectors
	Computing Density Matrices
	Customizing ELSI
	Customizing the ELSI Interface
	Customizing the ELPA Solver
	Customizing the libOMM Solver
	Customizing the PEXSI Solver
	Customizing the SLEPc-SIPs Solver
	Customizing the NTPoly Solver

	Getting Additional Results from ELSI
	Getting Results from the ELSI Interface
	Getting Results from the PEXSI Solver
	Extrapolation of wavefunction and density matrix

	Parallel Matrix I/O
	Setting Up Matrix I/O
	Writing Matrices
	Reading Matrices

	Example Pseudo-Code
	C/C++ Interface

