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Symmetric definite generalized eigenvalue problem
I Symmetric definite generalized eigenvalue problem

Ax = λBx

where
AT = A and BT = B > 0

I Eigen-decomposition
AX = BXΛ

where

Λ = diag(λ1, λ2, . . . , λn)

X = (x1, x2, . . . , xn)

XTBX = I.

I Assume λ1 ≤ λ2 ≤ · · · ≤ λn



LAPACK solvers
I LAPACK routines xSYGV, xSYGVD, xSYGVX are based on the

following algorithm (Wilkinson’65):

1. compute the Cholesky factorization B = GGT

2. compute C = G−1AG−T

3. compute symmetric eigen-decomposition QTCQ = Λ
4. set X = G−TQ

I xSYGV[D,X] could be numerically unstable if B is ill-conditioned:

|λ̂i − λi| . p(n)(‖B−1‖2‖A‖2 + cond(B)|λ̂i|) · ε

and

θ(x̂i, xi) . p(n)
‖B−1‖2‖A‖2(cond(B))1/2 + cond(B)|λ̂i|

specgapi
· ε

I User’s choice between the inversion of ill-conditioned Cholesky
decomposition and the QZ algorithm that destroys symmetry



Algorithms to address the ill-conditioning

1. Fix-Heiberger’72 (Parlett’80): explicit reduction

2. Chang-Chung Chang’74: SQZ method (QZ by Moler and Stewart’73)

3. Bunse-Gerstner’84: MDR method

4. Chandrasekaran’00: “proper pivoting scheme”

5. Davies-Higham-Tisseur’01: Cholesky+Jacobi

6. Working notes by Kahan’11 and Moler’14



This talk

Three approaches:

1. A LAPACK-style implementation of Fix-Heiberger algorithm

2. An algebraic reformulation

3. Locally accelerated block preconditioned steepest descent (LABPSD)



This talk

Three approaches:

1. A LAPACK-style implementation of Fix-Heiberger algorithm
Status: beta-release

2. An algebraic reformulation
Status: completed basic theory and proof-of-concept

3. Locally accelerated block preconditioned steepest descent (LABPSD)
Status: published two manuscripts, software to be released



A LAPACK-style implementation of Fix-Heiberger algorithm
(with C. Jiang)



A LAPACK-style solver
I xSYGVIC: computes ε-stable eigenpairs when BT = B ≥ 0 wrt a

prescribed threshold ε.

I Implementation is based on Fix-Heiberger’s algorithm, and organized
in three phases.

I Given the threshold ε, xSYGVIC determines:

1. A− λB is regular and has k (0 ≤ k ≤ n) ε-stable eigenvalues or
2. A− λB is singular.

I The new routine xSYGVIC has the following calling sequence:

xSYGVIC( ITYPE, JOBZ, UPLO, N, A, LDA, B, LDB, ETOL, &

K, W, WORK, LDWORK, WORK2, LWORK2, IWORK, INFO )



xSYGVIC – Phase I

1. Compute the eigenvalue decomposition of B (xSYEV):

B(0) = QT1 BQ1 = D =

[ n1 n2

n1 D(0)

n2 E(0)

]
,

where diagonal entries of D: d11 ≥ d22 ≥ . . . ≥ dnn, and elements of

E(0) are smaller than εd
(0)
11 .

2. Set E(0) = 0, and update A and B(0):

A(1) = RT1 Q
T
1 AQ1R1 =

[ n1 n2

n1 A
(1)
11 A

(1)
12

n2 A
(1)T
12 A

(1)
22

]

and

B(1) = RT1 B
(0)R1 =

[ n1 n2

n1 I
n2 0

]
,

where R1 = diag((D(0))−1/2, I)



xSYGVIC – Phase I

3. Early exit B is ε-well-conditioned. A− λB is regular and has n

ε-stable eigenpairs (Λ,X):
I A(1)U = UΛ (xSYEV).
I X = Q1R1U



xSYGVIC – Phase I: performance profile
I Test matrices A = QADAQ

T
A and B = QBDBQ

T
B where

I QA, QB are random orthogonal matrices;
I DA is diagonal with −1 < DA(i, i) < 1, i = 1, . . . , n;
I DB is diagonal with 0 < ε < DB(i, i) < 1, i = 1, . . . , n;

I 12-core on an Intel ”Ivy Bridge” processor (Edison@NERSC)
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xSYGVIC – Phase II

1. Compute the eigendecomposition of (2,2)-block A
(1)
22 of A(1) (xSYEV):

A
(2)
22 = Q

(2)T
22 A

(1)
22 Q

(2)
22 =

[ n3 n4

n3 D(2)

n4 E(2)

]
where eigenvalues are ordered such that |d(2)11 | ≥ |d

(2)
22 | ≥ · · · ≥ |d

(2)
n2n2 |,

and elements of E(2) are smaller than ε|d(2)11 |.
2. Set E(2) = 0, and update A(1) and B(1):

A(2) = QT2 A
(1)Q2, B(2) = QT2 B

(1)Q2

where Q2 = diag(I,Q
(2)
22 ).

3. Early exit When A
(1)
22 is a ε-well-conditioned matrix. A− λB is

regular and has n1 ε-stable eigenpairs (Λ,X):
I A(2)U = B(2)UΛ (Schur complement and xSYEV)
I X = Q1R1Q2U .



xSYGVIC – Phase II (backup)

A(2)U = B(2)UΛ (1)

where

A(2) =

[ n1 n2

n1 A
(2)
11 A

(2)
12

n2 A
(2)T
12 D(2)

]
and B(2) =

[ n1 n2

n1 I
n2 0

]
. Let

U =

[ n1

n1 U1

n2 U2

]
The eigenvalue problem (1) becomes

F (2)U1 =
(
A

(2)
11 −A

(2)
12 (D

(2))−1A
(2)T
12

)
U1 = U1Λ (xSYEV)

U2 = −(D(2))−1(A
(2)
12 )

TU1



xSYGVIC – Phase II: performance profile

Accuracy:

1. If B ≥ 0 has n2 zero eigenvalues:
I xSYGV stops, the Cholesky factorization of B could not be completed.
I xSYGVIC successfully computes n− n2 ε-stable eigenpairs.

2. If B has n2 small eigenvalues about δ, both xSYGV and xSYGVIC
“work”, but produce different quality numerically.1

I n = 1000, n2 = 100, δ = 10−13 and ε = 10−12.

Res1 Res2

DSYGV 3.5e-8 1.7e-11
DSYGVIC 9.5e-15 7.1e-12

I n = 1000, n2 = 100, δ = 10−15 and ε = 10−12.

Res1 Res2

DSYGV 3.6e-6 1.8e-10
DSYGVIC 1.3e-16 6.8e-14

1Res1 = ‖AX̂ −BX̂Λ̂‖F /(n‖A‖F ‖X̂‖F ) and

Res2 = ‖X̂TBX̂ − I‖F /(‖B‖F ‖X̂‖2F ).



xSYGVIC – Phase II: performance profile

Timing:

I Test matrices A = QADAQ
T
A and B = QBDBQ

T
B where

I QA, QB are random orthogonal matrices;
I DA is diagonal with −1 < DA(i, i) < 1, i = 1, . . . , n;
I DB is diagonal with 0 < DB(i, i) < 1, i = 1, . . . , n and n2/n
DB(i, i) < ε.

I 12-core on an Intel ”Ivy Bridge” processor (Edison@NERSC)
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xSYGVIC – Phase II: performance profile

Why is the overhead ratio of xSYGVIC lower?

I Performance of xSYGV varies depending on the percentage of “zero”
eigenvalues of B.

I For example, for n = 4000 on a 12-core processor execution:
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xSYGVIC – Phase III

1. A(2) and B(2) can be written as 3 by 3 blocks:

A(2) =


n1 n3 n4

n1 A
(2)
11 A

(2)
12 A

(2)
13

n3 A
(2)T
12 D(2)

n4 A
(2)T
13 0

 and B(2) =


n1 n3 n4

n1 I
n3 0
n4 0


where n3 + n4 = n2.

2. Reveal the rank of A
(2)
13 by QR decomposition with pivoting:

A
(2)
13 P

(3)
13 = Q

(3)
13 R

(3)
13

where

R
(3)
13 =

[ n4

n4 A
(3)
14

n5 0

]



xSYGVIC – Phase III

3. Final exit When n1 > n4 and A
(2)
13 is full rank,2 then A− λB is

regular and has n1 − n4 ε-stable eigenpairs (Λ,X):
I A(3)U = B(3)UΛ
I X = Q1R1Q2Q3U .

2All the other cases either lead A− λB to be “singular” or “regular but no finite
eigenvalues”.



xSYGVIC – Phase III (backup)

A(3)U = B(3)UΛ (2)

I Update
A(3) = QT3 A

(2)Q3 and B(3) = QT3 B
(2)Q3

where

Q3 =


n1 n3 n4

n1 Q
(3)
13

n3 I

n4 P
(3)
13


I Write A(3) and B(3) as 4× 4 blocks:

A
(3)

=



n4 n5 n3 n4

n4 A
(3)
11 A

(3)
12 A

(3)
13 A

(3)
14

n5 (A
(3)
12 )T A

(3)
22 A

(3)
23 0

n3 (A
(3)
13 )T (A

(3)
23 )T D(2) 0

n4 (A
(3)
14 )T 0 0 0

, B
(3)

=


n4 n5 n3 n4

n4 I
n5 I
n3 0
n4 0

,

where n1 = n4 + n5 and n2 = n3 + n4.



xSYGVIC – Phase III (backup)
I Let

U =


n5

n4 U1

n5 U2

n3 U3

n4 U4


then the eigenvalue problem (2) becomes:

U1 = 0(
A

(3)
22 −A

(3)
23 (D

(3))−1A
(3)T
23

)
U2 = U2Λ (xSYEV)

U3 = −(D(2))−1A
(3)T
23 U2

U4 = −(A(3)
14 )

−1
(
A

(3)
12 U2 +A

(3)
13 U3

)



xSYGVIC – Phase III: performance profile

Test case (Fix-Heiberger’72)

1. Consider 8× 8 matrices:

A = QTHQ and B = QTSQ,

where

H =



6 0 0 0 0 0 1 0
0 5 0 0 0 0 0 1
0 0 4 0 0 0 0 0
0 0 0 3 0 0 0 0
0 0 0 0 2 0 0 0
0 0 0 0 0 1 0 0
1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0


and

S = diag[1, 1, 1, 1, δ, δ, δ, δ]

As δ → 0, λ = 3, 4 are the only stable eigenvalues of A− λB.



xSYGVIC – Phase III: performance profile

2. The computed eigenvalues when δ = 10−15:

λi eig(A,B,’chol’) DSYGV DSYGVIC(ε = 10−12)

1 -3.334340289520080e+07 -0.3229260685047438e+08 0.3000000000000001e+01
2 -3.138309114827999e+07 -0.3107213627119420e+08 0.3999999999999999e+01
3 2.999999998949329e+00 0.2957918878610765e+01
4 3.999999999513074e+00 0.4150528124449937e+01
5 3.138309673669569e+07 0.3107214204558684e+08
6 3.334340856015300e+07 0.3229261357421688e+08
7 1.077763236890488e+15 0.1004773743630529e+16
8 2.468473375420724e+15 0.2202090698823234e+16



An algebraic reformulation
(with H. Xie)



Symmetric semi-definite pencil

Symmetric semi-definite pencil:

A− λB, with AT = A and BT = B ≥ 0



Symmetric semi-definite pencil

Canonical form. There exists a nonsingular matrix W ∈ Rn×n such that

WTAW =


2n1 r n2 s

2n1 Λ1

r Λ2

n2 Λ3

s 0

 andWTBW =


2n1 r n2 s

2n1 Ω1

r I
n2 0
s 0


where

Λ1 = In1
⊗K,Λ2 = diag(λi), Λ3 = diag(±1), Ω1 = In1

⊗ T

and

K =

[
0 1
1 0

]
, T =

[
1 0
0 0

]



Algebraic reformulation

Theorem [Xie and B.’16]. Suppose that the symmetric semi-definite pencil
A− λB is regular and simultaneously diagonalizable with a congruence
transformation. Given a symmetric positive definite matrix H ∈ Rk×k and
µ ∈ R, let us define

Ã = A+ µ(AZ)H(AZ)T , B̃ = B + (AZ)H(AZ)T ,

where Z ∈ Rn×k spans the nullspace of B. Then3

(1) The pencil Ã− λB̃ is symmetric definite,

(2) λ(Ã, B̃) = λf(A,B) ∪ λ(µH + (ZTAZ)−1, H)

By appropriately chosen H and µ, one can compute the k smallest (finite)
eigenvalues of A− λB directly, say by LOBPCG.

3Notations: λ(A,B) denotes the set of eigenvalues of a pencil A− λB. λf(A,B)
denotes the set of all finite eigenvalues of A− λB.



Algebraic reformulation

A test case from structure dynamics

LOBPCG:
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Algebraic reformulation

A test case from structure dynamics

Algebraic reformulation + LOBPCG without preconditioning
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Algebraic reformulation

A test case from structure dynamics

Algebraic reformulation + LOBPCG with preconditioning
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A locally accelerated BPSD (LABPSD)



Ill-conditioned GSEP

GSEP:
Hui = λiSui

1. Matrices H and S are ill-conditioned
e.g., cond(H), cond(S) = O(1010)

2. Share a near-nullspace span{V }
e.g., ‖HV ‖ = ‖SV ‖ = O(10−4)

3. No obvious spectrum gap between eigenvalues of interest and the rest
e.g.,

lowest 8



PSDid
I PSDed: Preconditioned Steepest Descent with implicit deflation

I Assume the first i− 1 eigenpairs (λ1, u1), . . . , (λi−1, ui−1) computed,
and denote Ui−1 = [u1, u2, . . . , ui−1].

I PSDid computes the i-th eigenpair (λi, ui)

0 initialize (λi;0, ui;0)
1 for j = 0, 1, . . . until convergence
2 compute ri;j = Hui;j − λi;jSui;j
3 precondition pi;j = −Ki;jri;j
4 (γi, wi) = RR(H,S,Z), where Z = [Ui−1 ui;j pi;j ]
5 λi;j+1 = γi, ui;j+1 = Zwi

I ..., [Faddeev/Faddeeva’63],..., [Longsine/McCormick’80] for Ki;j = I,
...



PSDid assumptions

1. initialize ui;0 such that UHi−1Sui;0 = 0 and ‖ui;0‖S = 1

2. λi;0 = ρ(ui;0), Rayleigh quotient

3. the preconditioners Ki;j are effective positive definite, namely,

Kd
i;j ≡ (U c

i−1)
TSKi;jSU

c
i−1 > 0,

where U c
i−1 = [ui, ui+1, . . . , un].



PSDid properties

1. Z is of full column rank

2. UHi−1Sui;j+1 = 0 and ‖ui;j+1‖S = 1

3. λi ≤ λi;j+1 < λi;j

4. λi;j − λi;j+1 ≥
√
g2 + φ2 − g = “step size” > 0,

… λi-1 λi
“step size”

λi+1
…

λi:j+1 λi:j

5. pi;j = −Ki;jri;j is an ideal search direction if pi;j satisfies

UTS(ui;j + pi;j) = (×, . . . ,×, ξi, 0, . . . , 0)T and ξi 6= 0. (3)

It implies that λi;j+1 = λi.



PSDid convergence

If λi < λi;0 < λi+1 and supjcond(Kd
i;j) = q <∞, then the sequence

{λi;j}j is strictly decreasing and bounded from below by λi, i.e.,

λi;0 > λi;1 > · · · > λi;j > λi;j+1 > · · · ≥ λi

and as j →∞,

1. λi;j → λi

2. ui;j converges to ui directionally:

‖ri;j‖S−1 = ‖Hui;j − λi;jSui;j‖S−1 → 0



PSDid convergence rate

Let εi;j = λi;j − λi, then

εi;j+1 ≤

[
∆+ τ

√
θi;jεi;j

1− τ(
√
θi;jεi;j + δi;jεi;j)

]2
εi;j

provided that the i-th approximate eigenvalue λi;j is localized, i.e.

τ(
√
θi;jεi;j + δi;jεi;j) < 1,

where

I ∆ = Γ−γ
Γ+γ and τ = 2

Γ+γ

I δi;j = ‖S
1
2Ki;jS

1
2 ‖ and θi:j = ‖S

1
2Ki;jMKi;jS

1
2 ‖

Γ and γ are largest and smallest pos. eigenvalues of Ki;jM and
M = PHi−1(H − λiS)Pi−1 and Pi−1 = I − Ui−1U

H
i−1S



PSDid convergence rate, cont’d

Remarks:

1. If Ki;j = I, the convergence of SD proven in
[Faddeev/Faddeeva’63,..., Longside/McCormick’80, ...]

2. If i = 1 and K1;j = K > 0, it is Samokish’s theorem (1958), which is
first and still sharpest quantitative analysis [Ovtchinnikov’06].

3. Asymptotically,

εi;j+1 ≤
[
∆+ O(ε

1/2
i;j )

]2
εi;j

4. Optimal Ki;j : ∆ = 0 ; quadratic conv.

5. Semi-optimal Ki;j : ∆+ τ
√
θi;jεi;j → 0 ; superlinear conv.

6. (Semi-)optimality depends on the eigenvalue distribution of Ki;jM



Locally accelerated preconditioner

Consider the preconditioner

K̂i;j =
(
H − βi;jS

)−1
with βi;j = λi;j − c‖ri;j‖S−1

If

0 < ∆i;j < min{1
4
∆2
i , 0.1} and c > 3

√
∆i;j .

Then

1. Ki;j is effective positive definite

2. λi;j is localized

3. ∆+ τ
√
θi;jεi;j → 0

Therefore, K̂i;j is asymptotically optimal



PSDid ; LABPSD = Locally Accelerated BPSD

0 Initialize Um+`;0 = [u1;0 u2;0 . . . um+`;0 ]
1 (Γ,W ) = RR(H,S,Um+`;0)
2 update Λm+`;0 = Γ and Um+`;0 = Um+`;0W
3 for j = 0, 1, . . ., do
4 compute R = HUm;j − SUm;jΛm;j ≡ [ r1;j r2;j . . . rm;j ]
5 if Res[Λm;j , Um;j ] = max1≤i≤m Res[λi;j , ui;j ] ≤ τeig, break
6 for i = 1, 2, . . . ,m

if λi;j is localized, then solve (H − λi;jS)pi;j = −ri;j for pi;j
7 (Γm+`,Wm+`) = RR(H,S,Z), where Z = [Um+`;j Pj ]
8 update Λm+`;j+1 = Γm+` and Um+`;j+1 = ZWm+`

9 end
10 return {(λi;j , ui;j)}mi=1

Note: A “global” preconditioner ≈ (H − σS)−1 can be used to accelerate
the “localization” and convergence of step 6.



Numerical example 1: Harmonic1D
I PUFE discretization for harmonic oscillator in 1D
I n = 112 for 6-digit accuracy of 4 smallest eigenvalues λ1, λ2, λ3, λ4
I H and S are ill-conditioned

cond(H) = 8.79× 1010 and cond(S) = 2.00× 1012

I H and S share a near-nullspace span{V }

‖HV ‖ = ‖SV ‖ = O(10−5) and dim(V ) = 17

I All computed λ̂1, λ̂2, λ̂3, λ̂4 have 6-digit accuracy.
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Numerical example 2: CeAl-PUFE
I Metallic, triclinic CeAl, particularly challenging [Cai, B., Pask,

Sukumar’13]
I n = 5336 from PUFE discretization of the Kohn-Sham equation
I H and S are ill-conditioned

cond(H) = 1.16× 1010 and cond(S) = 2.57× 1011

I H and S share a near-nullspace span{V }

‖HV ‖ = ‖SV ‖ = O(10−4) and dim(V ) = 1000
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