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Symmetric definite generalized eigenvalue problem

> Symmetric definite generalized eigenvalue problem
Ax = ABzx

where
AT=A and B"=B>0

» Eigen-decomposition
AX =BXA

where

A= diag()\l,/\27 .. >>\n)
X = (z1,22,...,2,)
XTBX =1.

> Assume A\; < Ag < -2 < A,



LAPACK solvers

» LAPACK routines xSYGV, xSYGVD, xSYGVX are based on the
following algorithm (Wilkinson'65):

1. compute the Cholesky factorization B = GGT

2. compute C = G *AG™T

3. compute symmetric eigen-decomposition QTCQ = A
4. set X =G TQ

» xSYGV[D,X] could be numerically unstable if B is ill-conditioned:
N =il £ pm) (1B~ [l2llAll2 + cond (B)[Xi]) - €
and

1B~ [|2]| All2(cond(B))*/? + cond(B) A ]
specgap;

0(zi,z:) S p(n)

» User's choice between the inversion of ill-conditioned Cholesky
decomposition and the QZ algorithm that destroys symmetry



Algorithms to address the ill-conditioning

AN A T o

Fix-Heiberger'72 (Parlett’80): explicit reduction

Chang-Chung Chang'74: SQZ method (QZ by Moler and Stewart'73)
Bunse-Gerstner'84: MDR method

Chandrasekaran’00: “proper pivoting scheme”
Davies-Higham-Tisseur'01: Cholesky+Jacobi

Working notes by Kahan'll and Moler'14



This talk

Three approaches:
1. A LAPACK-style implementation of Fix-Heiberger algorithm
2. An algebraic reformulation

3. Locally accelerated block preconditioned steepest descent (LABPSD)



This talk

Three approaches:

1. A LAPACK-style implementation of Fix-Heiberger algorithm
Status: beta-release

2. An algebraic reformulation
Status: completed basic theory and proof-of-concept

3. Locally accelerated block preconditioned steepest descent (LABPSD)
Status: published two manuscripts, software to be released



A LAPACK-style implementation of Fix-Heiberger algorithm
(with C. Jiang)



A LAPACK-style solver

> xSYGVIC: computes e-stable eigenpairs when B” = B > 0 wrt a
prescribed threshold ¢.
» |Implementation is based on Fix-Heiberger's algorithm, and organized
in three phases.
» Given the threshold £, xSYGVIC determines:
1. A— ABis regular and has k (0 < k < n) e-stable eigenvalues or
2. A — AB is singular.

» The new routine xSYGVIC has the following calling sequence:

xSYGVIC( ITYPE, JOBZ, UPLO, N, A, LDA, B, LDB, ETOL, &
K, W, WORK, LDWORK, WORK2, LWORK2, IWORK, INFO )



xSYGVIC — Phase |

1. Compute the eigenvalue decomposition of B (xSYEV):

ni na

BO =@QfBQ,=D=" [ D

n2

E(0) ] ?

where diagonal entries of D: dy1 > dos > ... > dyun, and elements of
E© are smaller than ed\} .

2. Set E(® =0, and update A and BO):.

ny no
1 1
AD 4

AW = RIQTAQ R =" | d)r i
A" A

n2
and
ny na
ny I
BYW = R{BOR, = { 0 }
n2

where Ry = diag((D(®)~1/2 1)



xSYGVIC — Phase |

3. B is e-well-conditioned. A — \B is regular and has n

e-stable eigenpairs (A, X):
» ADU = UA (xSYEV).
» X = Q1R1U



xSYGVIC — Phase I: performance profile
» Test matrices A = QaD4Q% and B = QDpQ%E where

> Qa,Qp are random orthogonal matrices;

» Dy, is diagonal with —1 < Da(i,i) < 1L,i=1,...,n;
» Dp is diagonal with 0 < e < Dp(i,i) < 1,i=1,...,n;

> 12-core on an Intel "lvy Bridge” processor (Edison@NERSC)
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xSYGVIC — Phase Il

1. Compute the eigendecomposition of (2,2)-block A} of A1) (xSYEV):

n3 ng

2 2T 4(1) H(2 D@
AD — QRT AW oR) _ [ o }
where eigenvalues are ordered such that |d \ > \d(2)| > > |d
and elements of E?) are smaller than 5|d§1)\.

2. Set E® =0, and update A and B

AR — QTA(I)Q B(® — QZTB(UQ2

where Qz = diag(1, Q(Z)).

3. When AéQ is a e-well-conditioned matrix. A — AB is

regular and has n e-stable eigenpairs (A, X):

» ABU = B®UA (Schur complement and xSYEV)
» X = Q1R1Q2U.



xSYGVIC — Phase Il (backup)

APy =B@UA (1)
where
@ @ v
b s Y IR
. Let

n | Ui
U="
na |: U2 :|
The eigenvalue problem (1) becomes
FOU, = (Aﬁ) - Ag”‘;)(D(Q))—lA%)T) Uy = Ui A (xSYEV)

Us = —(DP)~1(A) U,



xSYGVIC — Phase Il: performance profile

Accuracy:

1. If B > 0 has ng zero eigenvalues:

» xSYGV stops, the Cholesky factorization of B could not be completed.
» xSYGVIC successfully computes n — no e-stable eigenpairs.

2. If B has ny small eigenvalues about ¢, both xSYGV and xSYGVIC
“work”, but produce different quality numerically.
» n =1000,n2 = 100,56 = 10~ '* and ¢ = 107 2.
Resl Res2
DSYGV 3.5e-8 1.7e-11
DSYGVIC 9.5e-15 | 7.1le-12

-

» n =1000,n2 = 100,56 = 107'° and e = 10712,

Resl Res2
DSYGV 3.6e-6 1.8e-10

DSYGVIC || 1.3e-16 | 6.8e-14

IResl = [AX — BXA||r/(n|| Al r ||XHF) and
Res2 = [| XTBX — I||p/(I|B|Ir | X|2)



xSYGVIC — Phase Il: performance profile

Timing:
» Test matrices A = QaD Q% and B = QpDpQ% where
> Qa,Qp are random orthogonal matrices;
» Dy is diagonal with —1 < Da(i,i) < L,i=1,...,n;
» Dgp is diagonal with 0 < Dp(i,7) < 1,i=1,...,n and n2/n
DB(i,i) <e.
» 12-core on an Intel "lvy Bridge” processor (Edison@NERSC)
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xSYGVIC — Phase Il: performance profile

Why is the overhead ratio of xSYGVIC lower?

» Performance of xSYGV varies depending on the percentage of “zero”
eigenvalues of B.

» For example, for n = 4000 on a 12-core processor execution:

Runtime of DSYGV for n=4000

Runtime (seconds)

0 10%  20%  33%  50%
Percentage of "zero" eigenvalues of B



xSYGVIC — Phase Il
1. A® and B® can be written as 3 by 3 blocks:

ni ns n4g

2 2 2
n A(ll) Agz) A§3) ni
A(Q) — ng A(122)T D(Q) and B(Q) = ng3
na | AT 0 n4

where ng + nyg = no.

2. Reveal the rank of A%) by QR decomposition with pivoting:

2) (3 3) (3
A§3)P1(3) = Q§3)R§3)

where
n4

R _ i [ A ]
13 0
ns



xSYGVIC — Phase Il

3. | Final exit| When nq > n4 and A%) is full rank,? then A — AB is
regular and has ny — n4 e-stable eigenpairs (A, X):
» A®U =B®UA
» X = Q1R1Q2Q3U,

2All the other cases either lead A — AB to be “singular” or “regular but no finite
eigenvalues”.



xSYGVIC — Phase Il (backup)

A®U = B®UA

» Update
3 T 4(2 3 T p(2
A® =QFAPQ; and B =QIBPQ;
where
ni1 ns Mg
(3)
n1 13
QS = n3g 1
3
- pr
» Write A®) and B®) as 4 x 4 blocks:
ng ns ns ng
- 43 ROBENO NG .
. B LB B 4
A(3) _ M5 (A150) % 23 C B® _ns
ns (A %))T aGHhT  p® 0 n3
By \r n4
ng (A1y) 0 0 0

where n; = ng + ns and ny = n3 + ngy.



xSYGVIC — Phase Il (backup)

> Let
ns
nag Ul
U _ ns UQ
o ns U3
N4 U4

then the eigenvalue problem (2) becomes:

Ui = 0
( AD _ Aé%)(D(3))—1A(2§)T) Uy = UyA (xSYEV)
Us = —(DP) AR U,

Uy = —(Af) (Ag)UzJFA(é)UB)



xSYGVIC — Phase Ill: performance profile
Test case (Fix-Heiberger'72)

1. Consider 8 x 8 matrices:
A=QTHQ and B=QTsQ,

where

O OO OoO ™
_ O OO0 oo oo
O OO OO OO
OO OO WO oo
O OO OO OO
OO R OO O OO
OO O OO OO
[=leleolBaNeBol =

and
S =diag[1,1,1,1,4,4,4, 4]

As 6 — 0, A = 3,4 are the only stable eigenvalues of A — \B.



2. The computed eigenvalues when § = 10~1%:

>
K

eig(A,B,’chol’)

DSYGV

xSYGVIC — Phase Ill: performance profile

DSYGVIC(e = 10~ 12)

ONO U A WN =

-3.334340289520080e+07
-3.138309114827999e+07
2.999999998949329¢+00
3.999999999513074e+00
3.138309673669569e+07
3.334340856015300e+07
1.077763236890488e+15
2.468473375420724e+15

-0.3229260685047438e+08
-0.3107213627119420e+08
0.2957918878610765e+01
0.4150528124449937e+01
0.3107214204558684e+08
0.3229261357421688e+-08
0.1004773743630529e+16
0.2202090698823234e+16

0.3000000000000001e+01
0.3999999999999999e+-01



An algebraic reformulation
(with H. Xie)



Symmetric semi-definite pencil

Symmetric semi-definite pencil:

A—-)XB, withAT=Aand BT =B >0



Symmetric semi-definite pencil

Canonical form. There exists a nonsingular matrix W € R™*" such that

2n1 r no s 2ny  r  n2
2n1 /11 2ny Ql
T 7“ A2 T T I
WHAW = and W* BW =
no /13 na 0
s 0 s
where

/11 = Inl ® K, A2 = dlag(AZ), A3 = dlag(il), Ql = Inl ®T

and



Algebraic reformulation

Theorem [Xie and B.'16]. Suppose that the symmetric semi-definite pencil
A — AB is regular and simultaneously diagonalizable with a congruence
transformation. Given a symmetric positive definite matrix H € R*** and
u € R, let us define

A=A+ u(AZ2)H(AZ)T, B=B+ (AZ)H(AZ)T,

where Z € R™** spans the nullspace of B. Then3
(1) The pencil A — AB is symmetric definite,
(2) MA,B) = X\(A, B)UXuH + (ZTAZ)™' H)

By appropriately chosen H and p, one can compute the k smallest (finite)
eigenvalues of A — AB directly, say by LOBPCG.

3Notations: A(A, B) denotes the set of eigenvalues of a pencil A — AB. \¢(A, B)
denotes the set of all finite eigenvalues of A — AB.



Algebraic reformulation

A test case from structure dynamics

LOBPCG:

Residual norms

—e— 1st eigenvalue
—=—2nd eigenvalue
——3rd eigenvalue
—— 4th eigenvalue
—s— 5th eigenvalue

l .
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Iterations

50

60 70
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Algebraic reformulation

A test case from structure dynamics

Algebraic reformulation + LOBPCG without preconditioning

Residual norms

—e—1st eigenvalue

—a—2nd eigenvalue

10k | ——3rd eigenvalue

—— 4th eigenvalue

—— 5th eigenvalue
T

T . . . . .
0 50 100 150 200 250 300 350 400
Iterations




Algebraic reformulation

A test case from structure dynamics

Algebraic reformulation + LOBPCG with preconditioning

10 T T T
—e— 1st eigenvalue
—=—2nd eigenvalue
——3rd eigenvalue
—— 4th eigenvalue
@107 —— 5th eigenvalue
13
o
c
©
E
il
3
< 107
1 0"5 L L L L

0 20 40 60 80 100
lterations



A locally accelerated BPSD (LABPSD)



Ill-conditioned GSEP

GSEP:

1. Matrices H and S are ill-conditioned
e.g., cond(H), cond(S) = 0(10'9)

2. Share a near-nullspace span{V'}
e.g. [[HV] =SV] =0(10"7)

3. No obvious spectrum gap between eigenvalues of interest and the rest
e.g.,

— A

e lowest 8 ——>|



PSDid

» PSDed: Preconditioned Steepest Descent with implicit deflation
> Assume the first i — 1 eigenpairs (A1, u1),. .., (Ai—1,u;—1) computed,
and denote U;_1 = [u1, ug, ..., u;i—1].
» PSDid computes the i-th eigenpair (\;, u;)
0 initialize ()\7;;0,“7;;0)
1 forj=0,1,... until convergence
2 compute Tig = Hui;j — )\i;jSui;j
3 precondition p;.; = — K. ;1.5
4 ('yi,wi) = RR(I‘[7 S, Z), where 7 = [Ui—l Uy j pi;j]
5 Aij+1 = Yir Uiyl = Zw;

> ..., [Faddeev/Faddeeva'63],..., [Longsine/McCormick'80] for K;.; = I,



PSDid assumptions

1. initialize u;,0 such that UX | Su;0 = 0 and |luiolls = 1
2. Xi;o = p(us0), Rayleigh quotient
3. the preconditioners K;.; are effective positive definite, namely,

K{ = (Ufy)"SK;,;SUS_, >0,

where US| = [u;, Uig1, .. -, Up).



PSDid properties

1. Z is of full column rank

2. UM, Sui 11 =0and |lusalls =1

30X < i1 < Ay

4. Niij — Nigj1 > Vg% + ¢% — g = “step size” > 0,

A A

ijr1 Nigj

|

T
Ay A o<—-—7 L—J Aisy
“step size”

5. pi;j = —Kj;j74;5 is an ideal search direction if p;,; satisfies

UTS(uij +pij) = (X, %,6,0,...,007 and & #0.

It implies that /\i;j-i-l =\

(3)



PSDid convergence

If Ai < Aijo < Aig1 and supjcond(Kf}j) = q < 00, then the sequence
{Ai;j}; is strictly decreasing and bounded from below by \;, i.e.,

)\i;0>)\i;1>"'>)\i;j>Ai;j+1>"'2Ai

and as j — oo,
1. /\i;j — N
2. wy; converges to u; directionally:

[rijlls—1 = |1 Huij — AijjSusjlls-2 — 0



PSDid convergence rate
Let €5 = )\i;j — \;, then

2

. A—&-T\/@Jew .
INTRES 4
1 —7(\/bij€is; + 0 i1 €isj)

provided that the i-th approximate eigenvalue A;;; is localized, i.e.

Oijeij + Oijeiy) <1,
where
> A=p2 and 7 = Fiv
> diyj = HSEKMS%H and 0;.; = |52 K, MK, S2 ||

I" and +y are largest and smallest pos. eigenvalues of K;,;M and
M =PIl (H-XNS)P,_yand P,_y =1-U;_U1,S



PSDid convergence rate, cont’d

Remarks:

1. If K;;; = I, the convergence of SD proven in
[Faddeev/Faddeeva'63,..., Longside/McCormick’80, ...]

2. Ifi=1and K;,; = K >0, it is Samokish's theorem (1958), which is
first and still sharpest quantitative analysis [Ovtchinnikov'06].

3. Asymptotically,

€ij+1 < [A + 0(61/2)} 2 i

¥

4. Optimal K;;;: A =0 ~» quadratic conv.
5. Semi-optimal K;,;: A+ 74/0;.5€;; — 0 ~» superlinear conv.
6. (Semi-)optimality depends on the eigenvalue distribution of K;.; M



Locally accelerated preconditioner

Consider the preconditioner

=5 —1 .
Kij = (H = BiyS) with B = Xijj — cllrills—

1
0< Ay < min{ZAf,O.l} and ¢ > 3y/A;;.
Then

1. K;;; is effective positive definite
2. A;j is localized
3. A+71 91';]‘61‘;]' —0

Therefore, IA(M is asymptotically optimal



PSDid ~» LABPSD = Locally Accelerated BPSD

0 Initialize Um_;,_g;o = [Ul;O U2:0 .- Um+g;0]
1 (I,W) = RR(H, S, Un4:0)
2 Update Am+[;0 = I and Um+f;0 = Um+e;0W
3 forj=0,1,... do
4 compute R = HU»,,L;]' — SUm;J‘Am;j = [Tl;j 7"2;]' .. ’rm;j]
5 if RGS[AHL;]', Um;j] = MaXji<;<m Res[)\,;;j, Uq;;j] S Teig, break
6 fori=1,2,...,m
if )\i;j is Iocalized, then solve (H — )\i;jS)pi;j = —Tiy for Pisj
7 (Togt; Winyt) = RR(H, S, Z), where Z = [Up 4 P
8 update Am_;,_g;j_,_l = I'n+e and Unm+oj4+1 = ZWito
9 end
10 return {(Xigj, wiyi) iy

Note: A “global” preconditioner ~ (H — ¢S)~! can be used to accelerate
the “localization” and convergence of step 6.



Numerical example 1: HarmoniclD

» PUFE discretization for harmonic oscillator in 1D
» n = 112 for 6-digit accuracy of 4 smallest eigenvalues A1, A2, A3, \4
» H and S are ill-conditioned

cond(H) = 8.79 x 10'° and cond(S) = 2.00 x 10*?
> H and S share a near-nullspace span{V'}
|HV| = ||SV] = 0(107®) and dim(V) =17

» All computed Xl,X2,X3,X4 have 6-digit accuracy.

oPSD
0 LABPSD
10 10°
—_—— ReS1 —»—Res|
+ Res -2 —e—Resy
- P 10 Res.
— Res -
g B g —q—Res)|
2 Res, 10
o — 3
o 10 5
= 2,06
8 & 10
£ E
10°
-10
10 10—10
0 5 10 15 20 0 5 10 15 20

eigen iteration eigen iteration



Numerical example 2: CeAl-PUFE

» Metallic, triclinic CeAl, particularly challenging [Cai, B., Pask,
Sukumar'13]

» n = 5336 from PUFE discretization of the Kohn-Sham equation

» H and S are ill-conditioned

cond(H) = 1.16 x 10'° and cond(S) = 2.57 x 10'*
» H and S share a near-nullspace span{V'}

|HV| =||SV] = 0(10™*) and dim(V) = 1000

DPSD LABPSD
10° 4 10°
—»—Res}
—o—Res}, 107
E Res3 T
3 3 10
3. s —<—Res), 2
5 10 5
2 2, 6
kS T 10
© ©
10°
-10
10 10710
0 5 10 15 20 %% 5 10 15 20

eigen iteration eigen iteration



