Charge Transport and Energy Level Alignment with Ab Initio Methods

 $T(E) = \operatorname{Tr} \left[\Gamma_{\mathrm{L}} G_{\mathrm{C}}^{\prime \dagger} \Gamma_{\mathrm{R}} G_{\mathrm{C}}^{\prime} \right]$

Jeffrey B. Neaton

Department of Physics, University of California, Berkeley Molecular Foundry, Lawrence Berkeley National Laboratory Kavli Institute for Energy Nanosciences at Berkeley

Progression of Circuitry to the Molecular Scale

Explore electronic circuit components with molecular building blocks at unchartered length scale close to fundamental limit

Intel core i7 2010

Molecular switch, 2009

Examples of Hybrid Interfaces in Nanoscale Devices

2D van der Waals Heterojunctions

\$2

Kim, Hone, Heinz et al, Nature Nano. (2014)

Single-Molecule Junctions

Venkataraman, Campos, Neaton, et al, Nature Nano. (2015)

Photocatalysis with Nanoparticles

Halas et al, Nano Lett. **13**, 240 (2013)

Dye-Sensitized Solar Cells

Single-Molecule Conductance Measurements: STM-Break Junctions w/ Statistics

Xu and Tao, Science **301**, 1221 (2003) Venkataraman, Hybertsen *et al*, Nature **442**, 904 (2006)

See also e.g. van de Zant, Agrait, Natelson, Scheer, Reddy, Tal, van Ruitenbeek, van der Molen...

Single-Molecule Conductance Measurements: STM-Break Junctions w/ Statistics

Au-benzene-diamine-Au

Venkataraman, Hybertsen *et al*, Nature **442**, 904 (2006)

Charge Transport in Molecular Junctions

- Transport dominated by coherent tunneling
- Junction geometry, level alignment are central

First Principles Approach

- Density Functional Theory (DFT)
 - Structural energetics
 - van der Waals dispersion
 - Hybrid functionals

Liu, Neaton et al., Nano Lett. (2014)

1019 atoms

Capozzi, Liu, Neaton, Venkataraman et al., Nature Nano. (2015)

594 atoms

150 atoms

Kim, Liu, Neaton, Venkataraman et al PNAS (2014)

First Principles Approach

• Density Functional Theory (DFT)

- Structural energetics
- van der Waals dispersion
- Hybrid functionals

Donor-acceptor linkers: -NH₂, -N, -alkyl sulfide, etc

First Principles Approach

Ground-state Properties:

Cohesive Structural Vibrational Magnetic structure Phase transformations

• Density Functional Theory (LDA, GGA) Donor-acceptor linkers: -NH₂, -N, -alkyl sulfide, etc.

Many-Body Perturbation Theory (MBPT)

Spectroscopic Properties:

Photoemission Tunneling

 $\Sigma = iGW$

 N+1 Particle Problem Non-Equilibrium Green's Functions (NEGF)

- oab initio conductance, thermopower, IV
- approximate GW corrections
 N+2 Particle Problem

 - Electron-hole interaction

Physical effects influencing level alignment

- Electronic structure of isolated systems: IP,EA and work function
- Charge rearrangement upon binding: Interface dipole

Metal-molecule contact

Energy level diagram

Physical effects influencing level alignment

- Electronic structure of isolated systems: IP,EA and work function
- Charge rearrangement upon binding: Interface dipole
- Energy level broadening: Hybridization, lifetime

Metal-molecule contact

Energy level diagram

Physical effects influencing level alignment

- Electronic structure of isolated systems: IP,EA and work function
- Charge rearrangement upon binding: Interface dipole
- Energy level broadening: Hybridization, lifetime
- Electrode polarization: Non-local correlation

Kohn-Sham system from standard functionals inadequate.

Metal-molecule contact

Energy level diagram

Physical effects influencing level alignment

- Electronic structure of isolated systems: IP,EA and work function
- Charge rearrangement upon binding: Interface dipole
- Energy level broadening: Hybridization, lifetime
- Electrode polarization: Non-local correlation

Generalized Kohn-Sham system from hybrid functionals is quite promising (see later in the talk)

Gas-Phase BDA Electron Removal Energies with GW

Sharifzadeh, Tamblyn, Doak, Darancet, Neaton, Europhys. J. B 85, 323 (2012)

Molecular Levels Strongly Renormalized in Junction

Neaton, Hybertsen, Louie, Phys. Rev. Lett. **97**, 216405 (2006)

Benzene @ graphite: Computed Level Diagram

• Nonlocal electronic correlations, not present in DFT, between the molecule and substrate reduce gap

• Effect approximately captured by classical electrostatics

Corroborated by Thygesen, Rubio, Rinke, Sanvito

Steady-State Charge Transport with Open Boundary Conditions

Recast Hamiltonian H of the infinite open system...

...as three connected, tractable systems

Left lead (infinite but periodic)

Conducting region (finite)

Right lead (infinite but periodic)

Hamiltonian matrix of infinite system

First-Principles DFT-NEGF Workflow

After convergence:

Transmission obtained from Green's function and self-energies

Green's function and the density

zero-bias

finite-bias

$$\mathbf{D}_{\mu\nu} = w_{\mu\nu} (\mathbf{D}_{\mu\nu}^{L} + \Delta_{\mu\nu}^{R}) + (1 - w_{\mu\nu}) (\mathbf{D}_{\mu\nu}^{R} + \Delta_{\mu\nu}^{L}),$$

$$\mathbf{D} = -\frac{1}{\pi} \mathrm{Im} \left[\int_{-\infty}^{\infty} d\epsilon \, \mathbf{G}(\epsilon + i\delta) n_{F}(\epsilon - \mu) \right], \qquad \mathbf{D}_{\mu\nu}^{R} = -\frac{1}{\pi} \mathrm{Im} \left[\int_{EB}^{\infty} d\epsilon \, \mathbf{G}(\epsilon + i\delta) n_{F}(\epsilon - \mu_{R}) \right],$$

$$\Delta_{\mu,\nu}^{L} = \int_{-\infty}^{\infty} d\epsilon \left[\rho_{\mu\nu}^{L}(\epsilon) \right] \left[n_{F}(\epsilon - \mu_{L}) - n_{F}(\epsilon - \mu_{R}) \right]$$

$$\mathbf{N}_{eq} \text{ energy grid} \qquad \mathbf{2^{*}N_{eq} + N_{neq} energy grid}$$

$$\mathbf{G}(E) = \left[E\mathbf{S} - \mathbf{H}_{C} - \boldsymbol{\Sigma}_{L}(E) - \boldsymbol{\Sigma}_{R}(E) \right]^{-1}$$

$$\mathbf{p}_{\mu\nu}^{L}(\epsilon) = \frac{1}{\pi} \left[\mathbf{G}(\epsilon) \mathbf{\Gamma}_{L}(\epsilon) \mathbf{G}^{\dagger}(\epsilon) \right]_{\mu\nu}$$
Brandbyge et al, Phys. Rev B 65, 165401 (2002)

extra step: triple product

total time ~ N_{eq}

 $30 \sim 40$ SCF cycles, each cycle $10 \sim 15$ mins

total time ~ $2N_{eq} + N_{neq} + 2$ (triple product)

100 ~ 150 SCF cycles,

each cycle 30mins ~ 1hour

Conductance from Landauer formula & DFT+Σ

$$g = \frac{2e^2}{h} T(E)|_{E=E_F} = \text{Tr} \left[\Gamma_L G \Gamma_R G^{\dagger} \right] (E)|_{E=E_F}$$

- All quantities are of dimension Nc. Typically use ~10² energy grid
- NSCF: takes same time for zero/finite bias

DFT+Σ: Model GW Self-Energy Correction

• 'One-shot' correction $H_c \to H_c + \sum \Sigma_{mol} |\psi_{mol}\rangle \langle \psi_{mol} |$

mol

• Two terms, no adjustable parameters

Impact of Self-Energy Corrections: Benzene Diamine-Au

• Better treatment of exchange and correlation yields Gtheory within <20% of Gexpt !

$G_{GW} = 0.02 - 0.004G_0$

Strange et al, Phys. Rev. B. **83**, 115108 (2011) Rangel et al, Phys Rev. B. **84**, 045426 (2011) Quek et al, Nano Lett. 7, 3477 (2007)

Quek et al, Nano Lett. 9, 3949 (2009)

Molecular Junction Conductance: Experiment vs Theory

Validity of DFT+Σ, an approx. GW approach

• "Weakly coupled" junctions:

- Molecular states unchanged in junction
- Frontier orbitals are far from E_F
- Substrate polarization treated with image charge physics

Neglect

- Charge transfer between molecule & lead
- Changes in molecular polarizability
- Lead eigenstate self-energy corrections

Incorporating DFT+Σ Physics into a Hybrid Functional

Optimally-Tuned Range-Separated Hybrid (OTRSH) Functional:

Refaely-Abramson, Sharifzadeh, Govind, Autschbach, Neaton, Baer, and Kronik, Phys. Rev. Lett. **109**, 226405 (2012). Refaely-Abramson, Sharifzadeh, Jain, Baer, Neaton, and Kronik, Phys. Rev. B **88**, 081204(R) (2013).

Optimally-Tuned RSH Functional for Interfaces

HOMO (eV)

For a specific molecule-metal interface:

• Use gas-phase molecular α and γ ;

\Theta For the metal slab, find the image plane z_0 :

Egger, Liu, Neaton, and Kronik, Nano Lett. 15, 2448 (2015).

 ${f \Theta}$ Compute image-charge interaction P

4 Tune β such that:

 $\varepsilon_{\rm H}(\beta) - \varepsilon_{\rm H}(\beta_0) = P$

Currently only implemented for norm-conserving pseudopotential.

Liu, Egger, Refaely-Abramson, Kronik, and Neaton, in prep. (2016).

BDA @ Au(111): RSH Predicts Deeper Level & Different Lineshape

OT-RSH Applied to Molecular Junctions

Transport with peptides - need to understand how -COOH binds to Au surface. Study the difference between peptides and alkanes on decay constant β : g ~ exp(- β L).

Group members (this work)

Zhenfei Liu Michele Kotiuga (Rutgers) Sahar Sharifzadeh (Boston Univ.) Pierre Darancet (Argonne Nat'l Lab) Isaac Tamblyn (UOIT, Ottawa) Su Ying Quek (NUS, Singapore)

Collaborators

Latha Venkataraman, Columbia Mark Hybertsen, BNL Steven Louie, UC-Berkeley Luis Campos, Columbia Leeor Kronik, Weizmann Institute

