SPARSE MATRIX 2D BLOCK LAYOUT

for Supernode K = N down to 1do
‘ Compute selected elements of A=1 within K
end

O B & B OB B @

il " Pl P | P
Py | Ps Ps
P, Ps Ps
P2 P Py P3
6] Ps & u - 2D Block Cyclic layout
:
hl - 4-by-3 processor grid
o . .
o o P - No explicit load balancing
- Works well in practice
Ps P51 Ps Py
[Gupta]
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PARALLEL PROCESSING OF A SUPERNODE

AT — d=1+01S_¢ —¢'s™!
B -5y g1

- D: diagonal block
- L: lower triangular block
- U: upper triangular block
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CONCURRENCY BETWEEN SUPERNODES

for Supernode K = N down to 1 do
Rji < non-zero rows in supernode K
= S%L,R;CZRKJC
A)Cy)( —d'+ YTZR,O)(
ARK,)C P £
end

0@z B &B B [BO B B @

- Top-Down elimination tree traversal

- Exploit elimination tree to increase

concurrency

[SRE

Ps Ps

=]
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P2 Py Py

=]

Pe Ps .
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=
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o
»

7 W v
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- Serializations from common ancestors
- Serializations from layout

- How to schedule supernodes ?

- Level-based heuristic as first step

10/32



Progress: Tree-level parallelization

- “Flat-tree” communication pattern not efficient

|S Computation B Communication

60
50
40
'_3D— \
20
10
oL H
56

M CIBT

59X Speedup! Flat tree Binary tree  Mod Binary tree

[M. Jacquelin, LL, N. Wichmann and C. Yang, IPDPS 2016]



PEXSI MPI + X

Target architecture: Manycore CPUs & GPUs
Enough parallelism within node ?

Two different strategies:
— Fine granularity tasks to keep all cores busy (CPUs)

— Fork-join model with compute intensive phases
(GPUs)

— Focus on KNL first

Need to overlap MPI communications with
parallel intranode computations



Amount of parallelism in PEXSI

* MPI Messages are “aggregated”



Amount of parallelism in PEXSI

* MPI Messages are “aggregated”

1D problem: ACPNR4_120
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Amount of parallelism in PEXSI

* MPI Messages are “aggregated”

2D problem: Graphene 720
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Elimination tree level

 Fewer GEMMs as matrix get denser <~ Need to
break down GEMMis into smaller chunks



Parallelization strategy

 Use OpenMP Task to perform Indirect
addressing and GEMMs

 Each GEMM is performed sequentially within
a task

* One MPI message < Many fine granularity
tasks
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