SPARSE MATRIX 2D BLOCK LAYOUT

for Supernode K = N down to 1do
‘ Compute selected elements of A=1 within K
end

O B & B OB B @

il " Pl P | P
Py | Ps Ps
P, Ps Ps
P2 P Py P3
6] Ps & u - 2D Block Cyclic layout
:
hl - 4-by-3 processor grid
o . .
o o P - No explicit load balancing
- Works well in practice
Ps P51 Ps Py
[Gupta]

7/32

PARALLEL PROCESSING OF A SUPERNODE

AT — d=1+01S_¢ —¢'s™!
B -5y g1

- D: diagonal block
- L: lower triangular block
- U: upper triangular block

9/32

PARALLEL PROCESSING OF A SUPERNODE

AT — d=1+01S_¢ —¢'s™!
B -5y g1

- D: diagonal block
- L: lower triangular block

P5 L i | P =~
- - U: upper triangular block

- Broadcast L along columns

9/32

PARALLEL PROCESSING OF A SUPERNODE

AT — d=1+01S_¢ —¢'s™!
B -5y g1

- D: diagonal block
- L: lower triangular block

- U: upper triangular block

- Broadcast L along columns

6]
l
Ps
©)

sms.

9/32

PARALLEL PROCESSING OF A SUPERNODE

AT — d=1+01S_¢ —¢'s™!
B -5y g1

- D: diagonal block
- L: lower triangular block
- U: upper triangular block

- Broadcast L along columns

- Reduce contributions to L
along rows

9/32

PARALLEL PROCESSING OF A SUPERNODE

AT — d=1+01S_¢ —¢'s™!
B -5y g1

- D: diagonal block
- L: lower triangular block

= - U: upper triangular block
- Broadcast L along columns
- Reduce contributions to L
along rows

9/32

PARALLEL PROCESSING OF A SUPERNODE

AT — d=1+01S_¢ —¢'s™!
B -5y g1

- D: diagonal block
- L: lower triangular block
- U: upper triangular block

- Broadcast L along columns

- Reduce contributions to L
along rows

- Reduce contribution to D
within supernode column

9/32

PARALLEL PROCESSING OF A SUPERNODE

AT — d=1+01S_¢ —¢'s™!
B -5y g1

- D: diagonal block

- L: lower triangular block

= - U: upper triangular block
- Broadcast L along columns
- Reduce contributions to L
along rows
- Reduce contribution to D
within supernode column

9/32

CONCURRENCY BETWEEN SUPERNODES

for Supernode K = N down to 1 do
Rji < non-zero rows in supernode K
= S%L,R;CZRKJC
A)Cy)(—d'+ YTZR,O)(
ARK,)C P £
end

0@z B &B B [BO B B @

- Top-Down elimination tree traversal

- Exploit elimination tree to increase

concurrency

[SRE

Ps Ps

=]

=

P2 Py Py

=]

Pe Ps .

HE

=

=l
o
o
»

7 W v
S

- Serializations from common ancestors
- Serializations from layout

- How to schedule supernodes ?

- Level-based heuristic as first step

10/32

Progress: Tree-level parallelization

- “Flat-tree” communication pattern not efficient

|S Computation B Communication

60
50
40
'_3D— \
20
10
oL H
56

M CIBT

59X Speedup! Flat tree Binary tree Mod Binary tree

[M. Jacquelin, LL, N. Wichmann and C. Yang, IPDPS 2016]

PEXSI MPI + X

Target architecture: Manycore CPUs & GPUs
Enough parallelism within node ?

Two different strategies:
— Fine granularity tasks to keep all cores busy (CPUs)

— Fork-join model with compute intensive phases
(GPUs)

— Focus on KNL first

Need to overlap MPI communications with
parallel intranode computations

Amount of parallelism in PEXSI

* MPI Messages are “aggregated”

Amount of parallelism in PEXSI

* MPI Messages are “aggregated”

1D problem: ACPNR4_120

1E+10
9E+09
8E+09
7E+09
6E+09 =
" -
Q. —
2 5E+09 -
<] -
4E+09 - "Bl — —
3E+09 "W | g] = H =
2E+09 ™~ = = ™~ = S ™I : ™I :
1E+09 g E - - E - - E = == - =&
0 & | — = 2 =S u N = B B =S = NE=EE=ES =
123 456 7 8 910111213141516171819202122232425262728293031323334353637

Elimination Tree Level

Amount of parallelism in PEXSI

* MPI Messages are “aggregated”

2D problem: Graphene 720

1.2E+10
1E+10

8E+09 388 L

MFlops

6E+09

4E+09
An
2E+09 BEEEEEEEEEEEEEEEE BEE
i i
Tnn|IIII|||||””I..--:
1234567 8 91011121314151617181920212223242526272829303132333435363738394041424344

Elimination tree level

 Fewer GEMMs as matrix get denser <~ Need to
break down GEMMis into smaller chunks

Parallelization strategy

 Use OpenMP Task to perform Indirect
addressing and GEMMs

 Each GEMM is performed sequentially within
a task

* One MPI message < Many fine granularity
tasks

Parallelization strategy

 Use OpenMP Task to perform Indirect
addressing and GEMMs

 Each GEMM is performed sequentially within
a task

* One MPI message < Many fine granularity
tasks

Parallelization strategy
 Use OpenMP Task to perform Indirect
addressing and GEMMs

 Each GEMM is performed sequentially within
a task

* One MPI message < Many fine granularity
tasks

10

Parallelization strategy

 Use OpenMP Task to perform Indirect
addressing and GEMMs

* Each GEMM is performed sequentially within
a task

* One MPI message < Many fine granularity
tasks

<€ﬁ§% Ind. Addr.

Ind. Addr.

Parallelization strategy

 Use OpenMP Task to perform Indirect
addressing and GEMMs

 Each GEMM is performed sequentially within
a task

* One MPI message < Many fine granularity
tasks

Ind. Addr. g T GEMM

Parallelization strategy

 Use OpenMP Task to perform Indirect
addressing and GEMMs

 Each GEMM is performed sequentially within
a task

* One MPI message < Many fine granularity
tasks

13

71

<o T2

