
libOMM: Recent Development and Future
Directions

Haizhao Yang
Department of Mathematics, Duke University

Joint work with Jianfeng Lu
Department of Mathematics, physics, and chemistry, Duke University

August, 2017

Introduction

Convergence, current direction I of libOMM
Optimization schemes
Preconditioners

PSP, current direction II of libOMM
Comparision with Scalapack
Comparision with Intel MKL

Future direction of libOMM
OMM for finite temperature

Introduction

Optimization model

I The eigenspace associated to the first n smallest eigenvalues is
given by the trace minimization

E = min
X∈RN×n

Ec(X) = min
X∈RN×n,X∗X=In

tr(X ∗HX),

where In is an n × n identity matrix

I The orthonormality constraint X ∗X = In is expensive.

I In zero-temperature systems, target quantity:

XX ∗ ∈ RN×N .

Introduction

Optimization model

I Instead, we search for the eigenspace by an unconstrained
minimization

E = min
X∈RN×n

Eomm(X) = min
X∈RN×n

tr
(
(2In − X ∗X)(X ∗(H − ηIn)X)

)
,

where η is a proper shift.

I This is the orbital minimization method (OMM) originally proposed
for a linear scaling density matrix method using sparse BLAS.
[Mauri, Galli, Car,,Phys. Rev. B, 1993; Ordejon, Drabold,
Grumbach, Martin, Phys. Rev. B, 1993]

I All local minima of the OMM are global minima. [Lu and Thicke,
JCP, 2017]

I Only matrix-matrix multiplication and addition are needed.

I Good alternative to direct diagonalization
I Sparse Hamiltonian or Hamiltonian with planewave

discretization.
I In the case of good initial guess.

Introduction

Optimization model

I Instead, we search for the eigenspace by an unconstrained
minimization

E = min
X∈RN×n

Eomm(X) = min
X∈RN×n

tr
(
(2In − X ∗X)(X ∗(H − ηIn)X)

)
,

where η is a proper shift.

I This is the orbital minimization method (OMM) originally proposed
for a linear scaling density matrix method using sparse BLAS.
[Mauri, Galli, Car,,Phys. Rev. B, 1993; Ordejon, Drabold,
Grumbach, Martin, Phys. Rev. B, 1993]

I All local minima of the OMM are global minima. [Lu and Thicke,
JCP, 2017]

I Only matrix-matrix multiplication and addition are needed.

I Good alternative to direct diagonalization
I Sparse Hamiltonian or Hamiltonian with planewave

discretization.
I In the case of good initial guess.

Introduction

Optimization model

I Instead, we search for the eigenspace by an unconstrained
minimization

E = min
X∈RN×n

Eomm(X) = min
X∈RN×n

tr
(
(2In − X ∗X)(X ∗(H − ηIn)X)

)
,

where η is a proper shift.

I This is the orbital minimization method (OMM) originally proposed
for a linear scaling density matrix method using sparse BLAS.
[Mauri, Galli, Car,,Phys. Rev. B, 1993; Ordejon, Drabold,
Grumbach, Martin, Phys. Rev. B, 1993]

I All local minima of the OMM are global minima. [Lu and Thicke,
JCP, 2017]

I Only matrix-matrix multiplication and addition are needed.

I Good alternative to direct diagonalization
I Sparse Hamiltonian or Hamiltonian with planewave

discretization.
I In the case of good initial guess.

Introduction

Optimization model

I Instead, we search for the eigenspace by an unconstrained
minimization

E = min
X∈RN×n

Eomm(X) = min
X∈RN×n

tr
(
(2In − X ∗X)(X ∗(H − ηIn)X)

)
,

where η is a proper shift.

I This is the orbital minimization method (OMM) originally proposed
for a linear scaling density matrix method using sparse BLAS.
[Mauri, Galli, Car,,Phys. Rev. B, 1993; Ordejon, Drabold,
Grumbach, Martin, Phys. Rev. B, 1993]

I All local minima of the OMM are global minima. [Lu and Thicke,
JCP, 2017]

I Only matrix-matrix multiplication and addition are needed.

I Good alternative to direct diagonalization
I Sparse Hamiltonian or Hamiltonian with planewave

discretization.
I In the case of good initial guess.

Introduction

Convergence, current direction I of libOMM
Optimization schemes
Preconditioners

PSP, current direction II of libOMM
Comparision with Scalapack
Comparision with Intel MKL

Future direction of libOMM
OMM for finite temperature

Barzilai-Borwein method

αk(x (k) − x (k−1)) ≈ g (k) − g (k−1)

instead of
Fk(x

(k) − x (k−1)) = g (k) − g (k−1)

CG v.s. BB

Problem set up
A Hamiltonian matrix H in two dimensions(

−∆

2
+ V (r)

)
φj(r) = εjφj(r), r ∈ `T2 := [0, `)2,

with a periodic boundary condition, where V (r) is the potential field, εj is
the orbital energy of the corresponding Kohn-Sham orbital, φj(r).

CG v.s. BB

0 0.2 0.4 0.6 0.8 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1 0

0.5

1

1.5

2

2.5

x 10
4

Figure: Left: a Gaussian well. Right: the potential energy operator V (x).

N iter Riter time Rtime err

PCG 256 4.4e+02 1.8e+00 2.479e-01 1.8e+00 1.0e-05
ABB 256 3.9e+02 1.6e+00 3.690e-01 2.6e+00 1.1e-05

BBSD 256 2.4e+02 1.0e+00 1.407e-01 1.0e+00 1.1e-05

PCG 1024 1.5e+03 1.6e+00 1.347e+01 1.6e+00 1.0e-05
ABB 1024 1.4e+03 1.4e+00 1.193e+01 1.4e+00 1.1e-05

BBSD 1024 9.5e+02 1.0e+00 8.268e+00 1.0e+00 1.1e-05

PCG 4096 2.5e+03 1.8e+00 5.163e+01 1.8e+00 1.1e-05
ABB 4096 1.5e+03 1.1e+00 3.116e+01 1.1e+00 1.1e-05

BBSD 4096 1.4e+03 1.0e+00 2.911e+01 1.0e+00 1.1e-05

PCG 16384 2.8e+03 1.6e+00 1.620e+03 1.7e+00 1.1e-05
ABB 16384 2.5e+03 1.4e+00 1.391e+03 1.5e+00 1.1e-05

BBSD 16384 1.7e+03 1.0e+00 9.442e+02 1.0e+00 1.1e-05

Table: Numerical results for planewave discretization (preconditioned).

N iter Riter time Rtime err

CG 256 937 2.96 0.2 3.84 1.4e-05
ABB 256 268 0.85 0.0 0.83 1.4e-05

BBSD 256 316 1.00 0.1 1.00 1.3e-05

CG 1024 3386 3.33 3.6 3.73 1.4e-05
ABB 1024 525 0.52 0.5 0.55 1.4e-05

BBSD 1024 1016 1.00 1.0 1.00 1.4e-05

CG 4096 4112 3.56 48.0 3.61 1.5e-05
ABB 4096 516 0.45 6.1 0.46 1.5e-05

BBSD 4096 1154 1.00 13.3 1.00 1.5e-05

Table: Numerical results for finite difference discretization (no
preconditioner).

Preconditioning OMM

OMM:

E = min
X∈RN×n

Eomm(X) = min
X∈RN×n

tr
(
(2In − X ∗X)(X ∗(H − ηIn)X)

)
,

where η is a proper shift.

Lemma
The condition number of the OMM without preconditioner is
approximately at least

max

{
λN − λ1
λn+1 − λn

,
λN − λ1

4(η − λn)
,

4(η − λ1)

λn+1 − λn

}
,

where λ1 < λ2 < · · · < λN are eigenvalues of H.

Preconditioning OMM

I Inverse shifted Laplacian (adopted in libOMM) is a conventional
preconditioner:

P = P ⊗ In, where, P = (S − τ−1∆)−1,

where τ is a parameter setting the scale, and S is the overlapping
matrix.

I For planewave discretization, the TPA preconditioner is more
efficient empirically:

Pkk′ = δkk′
27 + 18s + 12s2 + 8s3

27 + 18s + 12s2 + 8s3 + 16s4
(1)

with s = |k |2/τ and τ a scaling parameter.

I A similar asymptotic behavior in common.

Preconditioning OMM

Better idea for preconditioning OMM

I Approximate spectral projector P corresponding to the n low-lying
eigenspace.

I P(X) can approximate the target subspace.

I Restrict search in the direction P(∇f (X)).

Preconditioning OMM

Question: How to construct the approximate spectral projector P?

I Chebyshev polynomials p(x);

I Rational functions p(x)
q(x) .

Chebyshev polynomial approximation

Preconditioning OMM

Question: How to construct the approximate spectral projector P?

I Chebyshev polynomials p(x);

I Rational functions p(x)
q(x) .

-4 -2 0 2 4

Re(x)

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

R
(x

)

Gauss-Legendre

Trapezoidal

Step function

Figure: Rational functions by discretizing the contour integral.

Numerical results

0 0.2 0.4 0.6 0.8 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1 0

0.5

1

1.5

2

2.5

x 10
4

Figure: Left: a Gaussian well. Right: the potential energy operator V (x).

Numerical results

Main parameters

I Number of grid points on the contour: 30;

I Iterative solver: a relative tolerance 10−5 and a maximum iteration
number 75;

I OMM: convergence tolerance 10−13 and the maximum iteration
number 4000;

Numerical results

4 6 8 10 12
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

log(n)

lo
g

1
0
(i
te

r)

TPA

gTPA

SPP

4 6 8 10 12

−12

−10

−8

−6

−4

−2

0

2

4

log(n)

lo
g

1
0
(d

)

TPA

gTPA

SPP

(a) number of iterations (b) log(error)

4 6 8 10 12

log(n)

-4

-2

0

2

4

6

8

10

12

14

16

lo
g

(T
to

t)

TPA

gTPA

SPP

3log(n) reference

4 6 8 10 12
0

10

20

30

40

50

60

70

80

log(n)

s
p
e
e
d
 u

p
 f
a
c
to

r

TPA/SPP

gTPA/SPP

(c) runtime scaling (d) speed-up factor

Introduction

Convergence, current direction I of libOMM
Optimization schemes
Preconditioners

PSP, current direction II of libOMM
Comparision with Scalapack
Comparision with Intel MKL

Future direction of libOMM
OMM for finite temperature

OMM

min
X∈RN×n

tr
(
(2In − X ∗X)(X ∗(H − ηIn)X)

)
requires only matrix-matrix multiplication and addition.

I Reduce the number of iterations;
I Improve the speed per iteration, especially the matrix-matrix

multiplication.

PSP: parallel and sparse BLAS

I The pspBLAS is an extensible distributed-memory parallel library
offering a basic set of linear algebra primitives.

I It achieves scalability and load balance via different distribution
strategies: 1D, 2D block (cyclic) distribution1.

I Rountines for sparse data types includes (sparse) matrix (sparse)
vector multiplication, (sparse) matrix (sparse) matrix multiplication,
etc.

I Supports several sparse format, e.g. COO, CSC, and CSR2

I Similar user habits with Scalapack

11.5D and 3D under development.
2CSR will be implemented in C++.

Comparison of Scalapack and PSP

m,	k,	n:		20000		20000		20000

sparsity:		0.95

n	n

m,	k,	n:		20000		20000		20000

sparsity:		0.95

n	t

(n,n) (n,t)

m,	k,	n:		20000		20000		20000

sparsity:		0.95

t	n

m,	k,	n:		20000		20000		20000

sparsity:		0.95

t	t

(t,n) (t,t)

Figure: Matrix size: 2000 by 2000. 95% zero entries.

Comparison of Scalapack and PSP

m,	k,	n:		30000		30000		30000

sparsity:		0.99

n	n

m,	k,	n:		30000		30000		30000

sparsity:		0.99

n	t

(n,n) (n,t)

m,	k,	n:		30000		30000		30000

sparsity:		0.99

t n

m,	k,	n:		30000		30000		30000

sparsity:		0.99

t t

(t,n) (t,t)

Figure: Matrix size: 3000 by 3000. 99% zero entries.

Comparison of sequential sparse BLAS

Optimization at the cache level

Matrix size
0 1000 2000 3000 4000 5000 6000 7000

lo
g(

Ti
m

e)

-12

-10

-8

-6

-4

-2

0

2

4

MKLspmm
PSP spmm
PSP mspm

Matrix size
0 500 1000 1500 2000 2500 3000 3500 4000

lo
g(

Ti
m

e)

-10

-5

0

5

MKLspmm
PSP spmm
PSP mspm

90% zeros 99% zeros

Figure: Comparison of Intel MKL and PSP, sparse matrix times dense
matrix, (n,n).

Introduction

Convergence, current direction I of libOMM
Optimization schemes
Preconditioners

PSP, current direction II of libOMM
Comparision with Scalapack
Comparision with Intel MKL

Future direction of libOMM
OMM for finite temperature

OMM for finite temperature

f (E) =
1

e(E−EF)/kT + 1

Interior eigen solver

Main subproblem
Given a hermitian matrix A ∈ RN×N and a spectrum range (a, b), find
the eigenpairs in (a, b).

Possible solution

I Construct a spectral projector of A, denoted as f (A), i.e.

f (A) = PP∗,

where P consists of all the eigenvectors corresponding to the
eigenvalues in (a, b).

I f (A)G gives the column space of P, where G ∈ RN×n is a random
matrix:

f (A)G = P(P∗G).

Interior eigen solver

Approximate spectral
projectors:

I Chebyshev polynomial f (x),
f (A)G =

∑r
n=0 anA

nG ;

I Rational function
f (x) =

∑r
n=0 anx

n∑s
n=0 bnx

n ,

f (A)G = (
r∑

n=0

anA
n)(

s∑
n=0

bnA
n)−1G .

Our contribution (Li, Y., preprint, 2017)

I Optimal approximation to the rectangular function for the fixed
order (r , s).

I Fast and stable algorithm for computing f (A)G for high orders.

Interior eigen solver

Approximate spectral
projectors:

I Chebyshev polynomial f (x),
f (A)G =

∑r
n=0 anA

nG ;

I Rational function
f (x) =

∑r
n=0 anx

n∑s
n=0 bnx

n ,

f (A)G = (
r∑

n=0

anA
n)(

s∑
n=0

bnA
n)−1G .

Our contribution (Li, Y., preprint, 2017)

I Optimal approximation to the rectangular function for the fixed
order (r , s).

I Fast and stable algorithm for computing f (A)G for high orders.

Numerical results

Figure: Step function approximation error.

Thank you!

	Introduction
	Convergence, current direction I of libOMM
	Optimization schemes
	Preconditioners

	PSP, current direction II of libOMM
	Comparision with Scalapack
	Comparision with Intel MKL

	Future direction of libOMM
	OMM for finite temperature

