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Introduction

Optimization model

I The eigenspace associated to the first n smallest eigenvalues is
given by the trace minimization

E = min
X∈RN×n

Ec(X ) = min
X∈RN×n,X∗X=In

tr(X ∗HX ),

where In is an n × n identity matrix

I The orthonormality constraint X ∗X = In is expensive.

I In zero-temperature systems, target quantity:

XX ∗ ∈ RN×N .



Introduction

Optimization model

I Instead, we search for the eigenspace by an unconstrained
minimization

E = min
X∈RN×n

Eomm(X ) = min
X∈RN×n

tr
(
(2In − X ∗X )(X ∗(H − ηIn)X )

)
,

where η is a proper shift.

I This is the orbital minimization method (OMM) originally proposed
for a linear scaling density matrix method using sparse BLAS.
[Mauri, Galli, Car,,Phys. Rev. B, 1993; Ordejon, Drabold,
Grumbach, Martin, Phys. Rev. B, 1993]

I All local minima of the OMM are global minima. [Lu and Thicke,
JCP, 2017]

I Only matrix-matrix multiplication and addition are needed.

I Good alternative to direct diagonalization
I Sparse Hamiltonian or Hamiltonian with planewave

discretization.
I In the case of good initial guess.
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Barzilai-Borwein method

αk(x (k) − x (k−1)) ≈ g (k) − g (k−1)

instead of
Fk(x

(k) − x (k−1)) = g (k) − g (k−1)



CG v.s. BB

Problem set up
A Hamiltonian matrix H in two dimensions(

−∆

2
+ V (r)

)
φj(r) = εjφj(r), r ∈ `T2 := [0, `)2,

with a periodic boundary condition, where V (r) is the potential field, εj is
the orbital energy of the corresponding Kohn-Sham orbital, φj(r).



CG v.s. BB
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Figure: Left: a Gaussian well. Right: the potential energy operator V (x).



N iter Riter time Rtime err

PCG 256 4.4e+02 1.8e+00 2.479e-01 1.8e+00 1.0e-05
ABB 256 3.9e+02 1.6e+00 3.690e-01 2.6e+00 1.1e-05

BBSD 256 2.4e+02 1.0e+00 1.407e-01 1.0e+00 1.1e-05

PCG 1024 1.5e+03 1.6e+00 1.347e+01 1.6e+00 1.0e-05
ABB 1024 1.4e+03 1.4e+00 1.193e+01 1.4e+00 1.1e-05

BBSD 1024 9.5e+02 1.0e+00 8.268e+00 1.0e+00 1.1e-05

PCG 4096 2.5e+03 1.8e+00 5.163e+01 1.8e+00 1.1e-05
ABB 4096 1.5e+03 1.1e+00 3.116e+01 1.1e+00 1.1e-05

BBSD 4096 1.4e+03 1.0e+00 2.911e+01 1.0e+00 1.1e-05

PCG 16384 2.8e+03 1.6e+00 1.620e+03 1.7e+00 1.1e-05
ABB 16384 2.5e+03 1.4e+00 1.391e+03 1.5e+00 1.1e-05

BBSD 16384 1.7e+03 1.0e+00 9.442e+02 1.0e+00 1.1e-05

Table: Numerical results for planewave discretization (preconditioned).



N iter Riter time Rtime err

CG 256 937 2.96 0.2 3.84 1.4e-05
ABB 256 268 0.85 0.0 0.83 1.4e-05

BBSD 256 316 1.00 0.1 1.00 1.3e-05

CG 1024 3386 3.33 3.6 3.73 1.4e-05
ABB 1024 525 0.52 0.5 0.55 1.4e-05

BBSD 1024 1016 1.00 1.0 1.00 1.4e-05

CG 4096 4112 3.56 48.0 3.61 1.5e-05
ABB 4096 516 0.45 6.1 0.46 1.5e-05

BBSD 4096 1154 1.00 13.3 1.00 1.5e-05

Table: Numerical results for finite difference discretization (no
preconditioner).



Preconditioning OMM

OMM:

E = min
X∈RN×n

Eomm(X ) = min
X∈RN×n

tr
(
(2In − X ∗X )(X ∗(H − ηIn)X )

)
,

where η is a proper shift.

Lemma
The condition number of the OMM without preconditioner is
approximately at least

max

{
λN − λ1
λn+1 − λn

,
λN − λ1

4(η − λn)
,

4(η − λ1)

λn+1 − λn

}
,

where λ1 < λ2 < · · · < λN are eigenvalues of H.



Preconditioning OMM

I Inverse shifted Laplacian (adopted in libOMM) is a conventional
preconditioner:

P = P ⊗ In, where, P = (S − τ−1∆)−1,

where τ is a parameter setting the scale, and S is the overlapping
matrix.

I For planewave discretization, the TPA preconditioner is more
efficient empirically:

Pkk′ = δkk′
27 + 18s + 12s2 + 8s3

27 + 18s + 12s2 + 8s3 + 16s4
(1)

with s = |k |2/τ and τ a scaling parameter.

I A similar asymptotic behavior in common.



Preconditioning OMM

Better idea for preconditioning OMM

I Approximate spectral projector P corresponding to the n low-lying
eigenspace.

I P(X ) can approximate the target subspace.

I Restrict search in the direction P(∇f (X )).



Preconditioning OMM

Question: How to construct the approximate spectral projector P?

I Chebyshev polynomials p(x);

I Rational functions p(x)
q(x) .

Chebyshev polynomial approximation
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Figure: Rational functions by discretizing the contour integral.



Numerical results
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Figure: Left: a Gaussian well. Right: the potential energy operator V (x).



Numerical results

Main parameters

I Number of grid points on the contour: 30;

I Iterative solver: a relative tolerance 10−5 and a maximum iteration
number 75;

I OMM: convergence tolerance 10−13 and the maximum iteration
number 4000;



Numerical results
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OMM

min
X∈RN×n

tr
(
(2In − X ∗X )(X ∗(H − ηIn)X )

)
requires only matrix-matrix multiplication and addition.

I Reduce the number of iterations;
I Improve the speed per iteration, especially the matrix-matrix

multiplication.



PSP: parallel and sparse BLAS

I The pspBLAS is an extensible distributed-memory parallel library
offering a basic set of linear algebra primitives.

I It achieves scalability and load balance via different distribution
strategies: 1D, 2D block (cyclic) distribution1.

I Rountines for sparse data types includes (sparse) matrix (sparse)
vector multiplication, (sparse) matrix (sparse) matrix multiplication,
etc.

I Supports several sparse format, e.g. COO, CSC, and CSR2

I Similar user habits with Scalapack

11.5D and 3D under development.
2CSR will be implemented in C++.



Comparison of Scalapack and PSP
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Figure: Matrix size: 2000 by 2000. 95% zero entries.



Comparison of Scalapack and PSP
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Figure: Matrix size: 3000 by 3000. 99% zero entries.



Comparison of sequential sparse BLAS

Optimization at the cache level
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matrix, (n,n).
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OMM for finite temperature

f (E ) =
1

e(E−EF )/kT + 1



Interior eigen solver

Main subproblem
Given a hermitian matrix A ∈ RN×N and a spectrum range (a, b), find
the eigenpairs in (a, b).

Possible solution

I Construct a spectral projector of A, denoted as f (A), i.e.

f (A) = PP∗,

where P consists of all the eigenvectors corresponding to the
eigenvalues in (a, b).

I f (A)G gives the column space of P, where G ∈ RN×n is a random
matrix:

f (A)G = P(P∗G ).



Interior eigen solver

Approximate spectral
projectors:

I Chebyshev polynomial f (x),
f (A)G =

∑r
n=0 anA

nG ;

I Rational function
f (x) =

∑r
n=0 anx

n∑s
n=0 bnx

n ,

f (A)G = (
r∑

n=0

anA
n)(

s∑
n=0

bnA
n)−1G .

Our contribution (Li, Y., preprint, 2017)

I Optimal approximation to the rectangular function for the fixed
order (r , s).

I Fast and stable algorithm for computing f (A)G for high orders.
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Numerical results

Figure: Step function approximation error.



Thank you!
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