ESLW_Drivers

10-21 July 2017

Volker Blum - ELSI Viktor Yu - ELSI William Huhn - ELSI David Lopez - Siesta Yann Pouillon - Abinit Micael Oliveira - Octopus & Abinit Fabiano Corsetti - Siesta & Onetep Paolo Giannozzi - QE Anoop Chandran - QE Pietro Delugas - QE Ivan Carnimeo - QE Emine Kucukbenli - QE Layla Martin-Samos - QE Stefano de Gironcoli - QE

Complementary to the previous ESL workshops, which addressed solvers for a variety of specific representations of the KS problem, "drivers" targeted the problem of extracting existing KS solvers from major Electronic Structure codes and refactor them as libraries in a representation-agnostic fashion, resulting in stronger code interoperability.

The two main iterative eigensolvers employed in the *pw.x* code of the *Quantum ESPRESSO* distribution have been completely disentangled from the rest of the code and converted to libraries. The solvers make use of a Linear Algebra domain-specific library LAXlib, developed within the MaX CoE, which is interfaced with ELPA and ScalaPack.

Solvers exploit MPI parallelization and in addition to basis-set component distribution, a parallelization over target states is possible, as well as a specific parallelization for the dense linear algebra.

Generic k-point as well as Gamma specific versions of the solvers are included. The Reverse Communication Interface (RCI) paradigm, allowing for a complete abstraction from the basis type and the interface used to perform the matrix-vector operations, has also been implemented for one of the solvers.

Diagonalization of $H\ensuremath{\mbox{KS}}$ is a major step in the scf solution of any system.

In pw.x two methods are implemented:

<u>Davidson diagonalization</u>

 efficient in terms of number of Hpsi required
 memory intensive: requires a work space up to
 (1+3*david) * nbnd * npwx
 and diagonalization of matrices up to
 david*nbnd x david*nbnd
 where david is by default 4, but can be reduced to 2

•<u>Conjugate Gradient</u>

-memory friendly: bands are dealt with one at a time.
-the need to orthogonalize to lower states makes it intrinsically sequential and not efficient for large systems.

Davidson Diagoalization

- •Given trial eigenpairs: $\{|\phi_i^{(n)}\rangle, \varepsilon_i^{(n)}\}$ •Eigenpairs of the reduced Hamiltonian $\tilde{H}_{ij} = \langle \phi_i^{(n)} | H_{KS} | \phi_j^{(n)} \rangle, \quad \tilde{S}_{ij} = \langle \phi_i^{(n)} | S | \phi_j^{(n)} \rangle$
- •Build the correction vectors $|\tilde{\phi}_i^{(n)}\rangle$ $|\tilde{\phi}_i^{(n)}\rangle = (H_{diag} - \varepsilon_i S_{diag})^{-1}(H_{KS} - \varepsilon_i S)|\phi_i^{(n)}\rangle$

•Build an extended reduced Hamiltonian

$$\tilde{H}_{ij} = \langle \phi_i^{(n)} / \tilde{\phi}^{(n)} | H_{KS} | \phi_j^{(n)} / \tilde{\phi}_j^{(n)} \rangle, \quad \tilde{S}_{ij} = \langle \phi_i^{(n)} / \tilde{\phi}_i^{(n)} | S | \phi_j^{(n)} / \tilde{\phi}_j^{(n)} \rangle$$

•Diagonalize the small 2nbnd x 2nbnd reduced Hamiltonian to get the new estimate for the eigenpairs $(\tilde{H} - \varepsilon \tilde{S})v = 0 \longrightarrow \{ |\phi_i^{(n+1)}\rangle, \varepsilon_i^{(n+1)} \}$

•Repeat if needed in order to improve the solution \rightarrow 3nbnd x 3nbnd \rightarrow 4nbnd x 4nbnd ... \rightarrow <u>nbnd x nbnd</u> <u>Davidson diagonalization</u>
efficient in terms of number of Hpsi required
memory intensive: requires a work space up to (1+3*david) * nbnd * npwx
and diagonalization of matrices up to david*nbnd x david*nbnd
where david is by default 4, but can be reduced to 2

•routines

- regterg , cegterg <u>real/cmplx</u> <u>eigen</u> i<u>ter</u>ative <u>g</u>eneralized
- h_psi, s_psi, g_psi
- rdiaghg, cdiaghg real/cmplx diagonalization <u>H</u> generalized

Conjugate Gradient

•For each band, given a trial eigenpair:

 $\{|\phi_i^{(n)}\rangle,\varepsilon_i\}$

•Minimize the single particle energy

 $E(|\phi_i\rangle) = \langle \phi_i | H_{KS} | \phi_j \rangle$

by (pre-conditioned) CG method

subject to the constraints

$$\langle \phi_i | S | \phi_j \rangle = \delta_{ij}, \quad \forall j \le i$$

•Repeat for next band until completed

•<u>Conjugate gradient</u>

-memory friendly: bands are dealt with one at a time.

-the need to orthogonalize to lower states makes it intrinsically sequential and not efficient for large systems.

•<u>routines</u>

- rcgdiagg , ccgdiagg <u>r</u>eal/<u>c</u>mplx <u>CG</u> <u>diag</u>onalization <u>g</u>eneralize
- rotate_wfc_gamma, rotate_wfc_k real/cmplx initial diag
- h_1psi, s_1psi
 - * preconditioning

The software developed during the Workshop is hosted by the e-cam gitlab server as a public sub-project of the ESL initiative (gitlab.e-cam2020/esl/ESLW_Drivers). It will be released under LGPL 2.1+

A toy code implementing the Cohen-Bergstresser empirical pseudopotential method is included to exemplify the use of the solvers and allow a quick test of their functionalities.

A git branch to contribute additional toy codes based on different basis set representations, tight-binding or real-space, to explicitly demonstrate the representation-agnostic nature of the solvers has been created and is under development.

A version of the PPCG algorithm is being ported.

Contribution to the KS_Solvers library of additional solvers from other codes is also foreseen.

https://gitlab.e-cam2020.eu/esl/ESLW_Drivers

CB_toy_code/Doc	empty
/examples	contains inputs and ref. outputs
/src	contains simple code mains
FFTXlib	fft library used by CB_toy_code
KS_Solvers/CG	band-by-band CG
/Davidson	Davidson iterative diagonalization
/Davidson_R0	CI Reverse Comm Interf version
/PPCG	under construction
LAXlib	linear algebra library (int w ELPA)
UtilXlib	basic utilities (error,timinig,para)
archive	library archive (lapack source)
clib	c timing routine
include	
install	configure, makedeps
Makefile	
configure	

PPCG – Projected Preconditioned Conjugate Gradient E. Vecharynski, C. Yang, J.E. Pask, J. Comp.Phys. **290**,73 (2015)

Algorithm 2: The projected preconditioned conjugate gradient (PPCG) algorithm.

The matrix A, a preconditioner T, and a starting guess of the invariant subspace $X^{(0)} \in \mathbb{C}^{n \times k}$ associated with the k Input: smallest eigenvalues of A; An approximate invariant subspace $X \in \mathbb{C}^{n \times k}$ associated with the *k* smallest eigenvalues of *A*; **Output:** 1: $X \leftarrow \operatorname{orth}(X^{(0)}); P \leftarrow [];$ 2: while convergence not reached do $W \leftarrow T(AX - X(X^*AX));$ 3: $W \leftarrow (I - XX^*)W;$ 4: $P \leftarrow (I - XX^*)P;$ 5: for i = 1, ..., k do 6: $S \leftarrow [x_i, w_i, p_i];$ 7: Find the smallest eigenpair (θ_{\min}, c_{\min}) of $S^*ASc = \theta S^*Sc$, where $c^*S^*Sc = 1$; 8: $\alpha_i \leftarrow c_{\min}(1), \beta_i \leftarrow c_{\min}(2); \text{ and } \gamma_i \leftarrow c_{\min}(3) \ (\gamma_i = 0 \text{ at the initial step});$ 9: $p_i \leftarrow \beta_i w_i + \gamma_i p_i;$ 10: $x_i \leftarrow \alpha_i x_i + p_i$. 11: end for 12: $X \leftarrow \operatorname{orth}(X);$ 13: If needed, perform the Rayleigh–Ritz procedure within span(X); 14: 15: end while

each band (or small group of bands) is updated by diagonalizing a small 3*blksize x 3*blksize matrix built from the current X, the orthogonal residual and the orthogonal conjugate direction • <u>PPCG</u> work in progress

-memory friendly: bands are dealt with a small block at a time.
-global calls to h_psi give opportunity for band parallelization (not working properly yet)

-each block can be dealt with independently (parallelization)
-most operations on arrays use efficient BLAS3 calls (DGEMM)

•<u>routines</u>

- ppcg, real PPCG, cmplx version presently not available
- rotate_wfc_gamma, real initial diag (the same as CG)
- h_psi, (s_psi) generalized algorithm not available yet
 - * preconditioning

Some recent work on an alternative iterative methods

A PARALLEL ORBITAL-UPDATING APPROACH FOR ELECTRONIC STRUCTURE CALCULATIONS *

XIAOYING DAI[†], XINGAO GONG[‡], AIHUI ZHOU[†], AND JINWEI ZHU[†]

Abstract. In this paper, we propose an orbital iteration based parallel approach for electronic structure calculations. This approach is based on our understanding of the single-particle equations of independent particles that move in an effective potential. With this new approach, the solution of the single-particle equation is reduced to some solutions of independent linear algebraic systems and a small scale algebraic problem. It is demonstrated by our numerical experiments that this new approach is quite efficient for full-potential calculations for a class of molecular systems.

arXiv:1405.0260v2 [math.NA] 20/11/2014

A PARALLEL ORBITAL-UPDATING BASED OPTIMIZATION METHOD FOR ELECTRONIC STRUCTURE CALCULATIONS *

XIAOYING DAI[†], ZHUANG LIU[‡], XIN ZHANG[§], AND AIHUI ZHOU[¶]

Abstract. In this paper, we propose a parallel optimization method for electronic structure calculations based on a single orbital-updating approximation. It is shown by our numerical experiments that the method is efficient and reliable for atomic and molecular systems of large scale over supercomputers.

arXiv:1510.07230v1 [math.NA] 25/10/2015

ParO in a nutshell

Algorithm 1.1.

- 1. Given initial data $(\lambda_i^{(0)}, u_i^{(0)}) \in \mathbb{R} \times H_0^1(\Omega)$ with $(u_i^{(0)}, u_j^{(0)})_{\Omega} = \delta_{ij}, (i, j = 1, 2, \dots, N)$, define \mathcal{T}_0 and V_0 , and let n = 0
- 2. Construct \mathcal{T}_{n+1} and V_{n+1} based on an adaptive procedure to $(\lambda_i^{(n)}, u_i^{(n)})$. 3. For $i = 1, 2, \dots, N$, find $u_i^{(n+1/2)} \in V_{n+1}$ satisfying

$$a(U^{(n)}; u_i^{(n+1/2)}, v) = \lambda_i^{(n)}(u_i^{(n)}, v) \ \forall v \in V_{n+1}$$

in parallel.

4. Project to eigenspace: find $(\lambda^{(n+1)}, u^{(n+1)}) \in \mathbb{R} \times \tilde{V}_{n+1}$ satisfying $||u^{(n+1)}||_{0,\Omega} = 1$ and

$$a(U^{(n+1/2)}; u^{(n+1)}, v) = \lambda^{(n+1)}(u^{(n+1)}, v) \quad \forall v \in \tilde{V}_{n+1}$$

to obtain eigenpairs $(\lambda_i^{(n+1)}, u_i^{(n+1)})(i = 1, 2, \dots, N)$. 5. Let n = n + 1 and go to Step 2. Here $\tilde{V}_{n+1} = span \{u_1^{(n+1/2)}, u_2^{(n+1/2)}, \dots, u_N^{(n+1/2)}\}, U^{(n)} = (u_1^{(n)}, u_2^{(n)}, \dots, u_N^{(n)}), U^{(n+1/2)} = (u_1^{(n+1/2)}, u_2^{(n+1/2)}, \dots, u_N^{(n+1/2)}), and a(\cdot; \cdot, \cdot) is the nonlinear variational form associated the Kohn-Sham equation defined in Section 2.2.$

arXiv:1405.0260v2 [math.NA] 20/11/2014

ParO as I understand it

•Given trial eigenpairs: $\{|\phi_i^{(n)}\rangle, \varepsilon_i^{(n)}\}$

•Solve <u>in parallel</u> the *nbnd* linear systems

$$(H_{KS} + \lambda S) |\tilde{\phi}_i^{(n)}\rangle = (\varepsilon_i^{(n)} + \lambda) S |\phi_i^{(n)}\rangle$$

•Build the reduced Hamiltonian

$$\tilde{H}_{ij} = \langle \tilde{\phi}_i^{(n)} | H_{KS} | \tilde{\phi}_j^{(n)} \rangle, \quad \tilde{S}_{ij} = \langle \tilde{\phi}_i^{(n)} | S | \tilde{\phi}_j^{(n)} \rangle$$

•Diagonalize the <u>small</u> *nbnd x nbnd* reduced Hamiltonian to get the new estimate for the eigenpairs

$$(\tilde{H} - \varepsilon \tilde{S})v = 0 \longrightarrow \{ |\phi_i^{(n+1)}\rangle, \varepsilon_i^{(n+1)} \}$$

•Repeat if needed in order to improve solution at fixed Hamiltonian

A variant of ParO method

•Given trial eigenpairs: $\{|\phi_i^{(n)}\rangle, \varepsilon_i^{(n)}\}$

•Solve in parallel the *nbnd* linear systems

$$(H_{KS} + \lambda S) |\tilde{\phi}_i^{(n)}\rangle = (\varepsilon_i^{(n)} + \lambda) S |\phi_i^{(n)}\rangle$$

•Build the reduced Hamiltonian from both $|\tilde{\phi}_i^{(n)}\rangle \& |\phi_i^{(n)}\rangle$ $\tilde{H}_{ij} = \langle \tilde{\phi}_i^{(n)} / \phi_i^{(n)} | H_{KS} | \tilde{\phi}_j^{(n)} / \phi_j^{(n)} \rangle, \quad \tilde{S}_{ij} = \langle \tilde{\phi}_i^{(n)} / \phi_i^{(n)} | S | \tilde{\phi}_j^{(n)} / \phi_j^{(n)} \rangle$

•Diagonalize the small $2nbnd \times 2nbnd$ reduced Hamiltonian to get the new estimate for the eigenpairs

$$(\tilde{H} - \varepsilon \tilde{S})v = 0 \longrightarrow \{ |\phi_i^{(n+1)}\rangle, \varepsilon_i^{(n+1)} \}$$

•Repeat if needed in order to improve solution at fixed Hamiltonian

A variant of ParO method (2)

•Given trial eigenpairs: $\{|\phi_i^{(n)}\rangle, \varepsilon_i^{(n)}\}$

•Solve in parallel the *nbnd* linear systems

 $\begin{pmatrix} H_{KS} - \varepsilon_i^{(n)}S + \alpha S | \phi_i^{(n)} \rangle \langle \phi_i^{(n)} | S \rangle | \tilde{\phi}_i^{(n)} \rangle = -(H_{KS} - \varepsilon_i^{(n)}S) | \phi_i^{(n)} \rangle \\ \bullet \text{Build the reduced Hamiltonian from both } | \tilde{\phi}_i^{(n)} \rangle & \| \phi_i^{(n)} \rangle \\ \tilde{H}_{ij} = \langle \tilde{\phi}_i^{(n)} / \phi_i^{(n)} | H_{KS} | \tilde{\phi}_j^{(n)} / \phi_j^{(n)} \rangle, \quad \tilde{S}_{ij} = \langle \tilde{\phi}_i^{(n)} / \phi_i^{(n)} | S | \tilde{\phi}_j^{(n)} / \phi_j^{(n)} \rangle$

•Diagonalize the <u>small</u> 2*nbnd* x 2*nbnd* reduced Hamiltonian to get the new estimate for the eigenpairs

$$(\tilde{H} - \varepsilon \tilde{S})v = 0 \longrightarrow \{ |\phi_i^{(n+1)}\rangle, \varepsilon_i^{(n+1)} \}$$

•Repeat if needed in order to improve solution at fixed Hamiltonian

- Domain decomposition parallelization
- Basis set components are distributed
- Memory is distributed

- Band group parallelization
- Operations on dynamically defined band groups are distributed
- Memory is NOT distributed

- Parallel dense diagonalization
- A dedicated communicator is present (interface with ScaLapack and ELPA)