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Complementary to the previous ESL workshops, which addressed 
solvers for a variety of specific representations of the KS problem, 
"drivers" targeted the problem of extracting existing KS solvers from 
major Electronic Structure codes and refactor them as libraries in a 
representation-agnostic fashion, resulting in stronger code 
interoperability. 

The two main iterative eigensolvers employed in the pw.x code of the 
Quantum ESPRESSO distribution have been completely disentangled 
from the rest of the code and converted to libraries. The solvers make 
use of a Linear Algebra domain-specific library LAXlib, developed 
within the MaX CoE, which is interfaced with ELPA and ScalaPack. 

Solvers exploit MPI parallelization and in addition to basis-set 
component distribution, a parallelization over target states is possible, 
as well as a specific parallelization for the dense linear algebra. 

Generic k-point as well as Gamma specific versions of the solvers are 
included. The Reverse Communication Interface (RCI) paradigm, 
allowing for a complete abstraction from the basis type and the 
interface used to perform the matrix-vector operations, has also been 
implemented for one of the solvers. 



  

Diagonalization of HKS is a major step in the scf solution of any 
system.

In pw.x two methods are implemented:

●Davidson diagonalization
-efficient in terms of number of  Hpsi required 
-memory intensive: requires a work space up to 
      (1+3*david) * nbnd * npwx
 and diagonalization of matrices up to 
      david*nbnd x david*nbnd 
 where david is by default 4, but can be reduced to 2

●Conjugate Gradient
-memory friendly: bands are dealt with one at a time.
-the need to orthogonalize to lower states makes it intrinsically 
 sequential and not efficient for large systems. 



Davidson Diagoalization

●Given trial eigenpairs:
●Eigenpairs of  the reduced Hamiltonian

●Diagonalize the small 2nbnd x 2nbnd reduced 
Hamiltonian to get the new estimate for the eigenpairs

●Repeat if needed in order to improve the solution
→ 3nbnd x 3nbnd → 4nbnd x 4nbnd … → nbnd x nbnd

●Build the correction vectors  

●Build an extended reduced Hamiltonian 



  

●Davidson diagonalization
-efficient in terms of number of  Hpsi required 
-memory intensive: requires a work space up to 
      (1+3*david) * nbnd * npwx
 and diagonalization of matrices up to 
      david*nbnd x david*nbnd 
 where david is by default 4, but can be reduced to 2

●routines

- regterg , cegterg  real/cmplx  eigen iterative generalized

- h_psi, s_psi, g_psi

- rdiaghg, cdiaghg  real/cmplx diagonalization H generalized



Conjugate Gradient

●For each band, given a trial eigenpair:

●Minimize the single particle energy 

by (pre-conditioned) CG method
                
subject to the constraints

  

●Repeat for next band until completed  



  

●Conjugate gradient
-memory friendly: bands are dealt with one at a time.
-the need to orthogonalize to lower states makes it intrinsically 
 sequential and not efficient for large systems. 

●routines

- rcgdiagg , ccgdiagg  real/cmplx CG diagonalization generalized

- rotate_wfc_gamma, rotate_wfc_k        real/cmplx initial diag

- h_1psi, s_1psi

   * preconditioning



The software developed during the Workshop is hosted by the e-cam 
gitlab server as a public sub-project of the ESL initiative (gitlab.e-
cam2020/esl/ESLW_Drivers).    It will be released under LGPL 2.1+

A toy code implementing the Cohen-Bergstresser empirical 
pseudopotential method is included to exemplify the use of the solvers 
and allow a quick test of their functionalities. 

A git branch to contribute additional toy codes based on different basis 
set representations, tight-binding or real-space, to explicitly demonstrate 
the representation-agnostic nature of the solvers has been created and is 
under development. 

A version of the PPCG algorithm is being ported.

Contribution to the KS_Solvers library of additional solvers from other 
codes is also foreseen.  



https://gitlab.e-cam2020.eu/esl/ESLW_Drivers

CB_toy_code/Doc              empty
                    /examples     contains inputs and ref. outputs
                    /src               contains simple code mains
FFTXlib                            fft library used by CB_toy_code
KS_Solvers/CG                 band-by-band CG 
                  /Davidson       Davidson iterative diagonalization
                  /Davidson_RCI  Reverse Comm Interf version
                  /PPCG            under construction
LAXlib                              linear algebra library (int w ELPA) 
UtilXlib                            basic utilities (error,timinig,para)
archive                            library archive (lapack source)
clib                                  c timing routine 
include
install                              configure, makedeps       
Makefile
configure

https://gitlab.e-cam2020.eu/esl/ESLW_Drivers


PPCG – Projected Preconditioned Conjugate Gradient
E. Vecharynski, C. Yang, J.E. Pask,   J. Comp.Phys. 290,73 (2015) 

each band (or small group of bands) is updated by diagonalizing
a small 3*blksize x 3*blksize matrix built from the current X,
the orthogonal residual and the orthogonal conjugate direction



  

● PPCG  work in progress

●-memory friendly: bands are dealt with a small block at a time.
●-global calls to h_psi give opportunity for band parallelization 
(not working properly yet)

●-each block can be dealt with independently (parallelization)
●-most operations on arrays use efficient BLAS3 calls (DGEMM)

●routines

- ppcg,      real PPCG,  cmplx version presently not available
 
- rotate_wfc_gamma,   real initial diag (the same as CG)

- h_psi, (s_psi)    generalized algorithm  not available yet

   * preconditioning



  arXiv:1510.07230v1 [math.NA] 25/10/2015

  arXiv:1405.0260v2 [math.NA] 20/11/2014

Some recent work on an alternative iterative methods



  arXiv:1405.0260v2 [math.NA] 20/11/2014

ParO in a nutshell



ParO as I understand it

●Solve in parallel the nbnd  linear systems

●Given trial eigenpairs:

●Build the reduced Hamiltonian

●Diagonalize the small nbnd x nbnd reduced Hamiltonian 
to get the new estimate for the eigenpairs

●Repeat if needed in order to improve solution at   
 fixed Hamiltonian 



A variant of ParO method

●Solve in parallel the nbnd  linear systems

●Given trial eigenpairs:

●Build the reduced Hamiltonian from both 

●Diagonalize the small 2nbnd x 2nbnd reduced 
Hamiltonian to get the new estimate for the eigenpairs

●Repeat if needed in order to improve solution at   
 fixed Hamiltonian 



A variant of ParO method  (2)

●Solve in parallel the nbnd  linear systems

●Given trial eigenpairs:

●Build the reduced Hamiltonian from both 

●Diagonalize the small 2nbnd x 2nbnd reduced 
Hamiltonian to get the new estimate for the eigenpairs

●Repeat if needed in order to improve solution at   
 fixed Hamiltonian



● Band group parallelization
● Operations on dynamically defined  band groups are 
distributed
● Memory is NOT distributed

● Parallel dense diagonalization 
● A dedicated communicator is present (interface with 
ScaLapack and ELPA) 

● Domain decomposition parallelization
● Basis set components are distributed
● Memory is distributed
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