
Efficient computation of sparse matrix

functions for large scale electronic

structure calculations: The CheSS

library

Stephan Mohr, William Dawson, Michael Wagner, Damien

Caliste, Takahito Nakajima, Luigi Genovese

Barcelona Supercomputing Center

ELSI Connector Meeting 2017

location, 16th August 2017

Motivation Applicability Theory Sparsity Accuracy Scaling with matrix properties Parallel scaling Comparison

Outline

History and motivation for CheSS

Applicability of CheSS

Short overview of the theory behind CheSS

Various performance data

2 / 18

Motivation Applicability Theory Sparsity Accuracy Scaling with matrix properties Parallel scaling Comparison

Motivation for CheSS

CheSS is a “spin-off” of the linear scaling version of BigDFT.

localized basis set leads to sparse matrices

we have to exploit this sparsity to reach linear scaling

we did not find a package that fits our need

=⇒ we created our own sparse matrix routines within BigDFT

We have the same situation in all DFT codes with a localized basis set
=⇒ we created a standalone library: CheSS

CheSS can be obtained for free from https://launchpad.net/chess

A paper is in review: https://arxiv.org/abs/1704.00512

3 / 18

https://launchpad.net/chess
https://arxiv.org/abs/1704.00512

Motivation Applicability Theory Sparsity Accuracy Scaling with matrix properties Parallel scaling Comparison

Applicability of CheSS

CheSS performs best for matrices exhibiting a small spectral width.

Can this be obtained in practice?

S H

system #atoms sparsity εmin εmax κ sparsity εmin εmax λ ∆HL

DNA 15613 99.57% 0.72 1.65 2.29 98.46% -29.58 19.67 49.25 2.76
bulk pentacene 6876 98.96% 0.78 1.77 2.26 97.11% -21.83 20.47 42.30 1.03
perovskite 768 90.34% 0.70 1.50 2.15 76.47% -20.41 26.85 47.25 2.19
Si nanowire 706 93.24% 0.72 1.54 2.16 81.61% -16.03 25.50 41.54 2.29
water 1800 96.71% 0.83 1.30 1.57 90.06% -26.55 11.71 38.26 9.95

4 / 18

Motivation Applicability Theory Sparsity Accuracy Scaling with matrix properties Parallel scaling Comparison

Basic idea

In CheSS we approximate matrix functions by Chebyshev polynomials:

p(M) =
c0

2
I +

npl∑
i=1

ciT
i (M̃) ,

with

M̃ = σ(M− τ I) ; σ =
2

εmax − εmin
; τ =

εmin + εmax

2

and

cj =
2

npl

npl−1∑
k=0

f

[
1

σ
cos

(
π(k + 1

2)

npl

)
+ τ

]
cos

(
πj(k + 1

2

npl

)
.

Recursion relation for the Chebyshev polynomials:

T0(M̃) = I ,

T1(M̃) = M̃ ,

Tj+1(M̃) = 2M̃Tj(M̃)− Tj−1(M̃) .

Each column independent
=⇒ easily parallelizable.

Strict sparsity pattern
=⇒ linear scaling

5 / 18

Motivation Applicability Theory Sparsity Accuracy Scaling with matrix properties Parallel scaling Comparison

Available functions

CheSS can calculate those matrix functions needed for DFT:

density matrix: f (x) = 1
1+eβ(x−µ)

(or f (x) = 1
2

[
1− erf

(
β(ε− x)

)]
)

energy density matrix: f (x) = x
1+eβ(x−µ)

(or f (x) = x
2

[
1− erf

(
β(ε− x)

)]
)

matrix powers: f (x) = xa (a can be non-integer!)

We can calculate arbitrary functions by changing only the coefficients cj !

Only requirement:
function f must be well representable by Chebyshev polynomials over the
entire eigenvalue spectrum.

6 / 18

Motivation Applicability Theory Sparsity Accuracy Scaling with matrix properties Parallel scaling Comparison

Sparsity and truncation

CheSS works with predefined sparsity patterns.

In general there are three:
pattern for the original matrix M
pattern for the matrix function f (M)
auxiliary pattern to perform the matrix-vector multiplications

At the moment all of them must be defined by the user.
Typically: distances atoms / basis functions

1 original matrix M

2 exact calculation of M−1 without
sparsity constraints

3 sparse calculation of M−1 using
CheSS within the sparsity pattern

4 difference between Fig. 2 and
Fig. 3

7 / 18

Motivation Applicability Theory Sparsity Accuracy Scaling with matrix properties Parallel scaling Comparison

Accuracy – error definition

There are two possible factors affecting the accuracy of CheSS:

error introduced due to the enforced sparsity (truncating the
matrix-vector multiplications)

error introduced by the Chebyshev fit

This also affects the definition of the “exact solution”. Two possibilities:

1 calculate the solution exactly and without sparsity constraints and
then crop to the sparsity pattern. Shortcoming: violates in general
the identity f −1(f (M)) = M

2 calculate the solution within the sparsity pattern, and define as exact
one that which fulfills f̂ −1(f̂ (M)) = M

According error definitions:

1 wf̂sparse
= 1
|f̂ (M)|

√∑
(αβ)∈f̂ (M)

(
f̂ (M)αβ − f (M)αβ

)2

2 wf̂ −1(f̂) = 1
|f̂ (M)|

√∑
(αβ)∈f̂ (M)

(
f̂ −1(f̂ (M))αβ −Mαβ

)2

8 / 18

Motivation Applicability Theory Sparsity Accuracy Scaling with matrix properties Parallel scaling Comparison

Accuracy

Inverse:

wf̂ −1(f̂): error due to Chebyshev fit
basically zero

wf̂sparse
: error due to sparsity pattern

very small

10
-12

10
-11

10
-10

10
-9

10
-8

10
-7

10
-6

 10 100 1000

m
e
a
n
 r

e
la

ti
v
e
 e

rr
o
r

condition number

wf̂
-1

(f̂)
wf̂sparse

Density matrix:

energy (i.e. Tr(KH)): relative error
of only 0.01%

slightly larger error for small
spectral width:
eigenvalues are denser, finite
temperature smearing affects more

0.000

0.005

0.010

0.015

0.020

0.025

 0.001 0.01 0.1 1

re
la

ti
v
e

 e
rr

o
r

in
 %

gap (eV)

spectral width 50.0 eV
spectral width 100.0 eV
spectral width 150.0 eV

9 / 18

Motivation Applicability Theory Sparsity Accuracy Scaling with matrix properties Parallel scaling Comparison

Scaling with matrix size and sparsity

Series of matrices with the same “degree of sparsity”
(DFT calculations of water droplet of various size).

Example: calculation of the inverse

Runtime only depends on the number of non-zero elements of M

no dependence on the total matrix size

 0

 20

 40

 60

 80

 100

 120

 5x10
6

 1x10
7

 1.5x10
7

 2x10
7

ru
n

ti
m

e
 (

s
e

c
o

n
d

s
)

number of non-zero elements in the original matrix

matrix size 6000
matrix size 12000
matrix size 18000
matrix size 24000
matrix size 30000
matrix size 36000

10 / 18

Motivation Applicability Theory Sparsity Accuracy Scaling with matrix properties Parallel scaling Comparison

Scaling with spectral properties

CheSS is extremely sensitive to the eigenvalue spectrum:

required polynomial degree strongly increases with the spectral width

as a consequence the runtime strongly increases as well

a good input guess for the eigenvalue bounds helps a lot

Example: calculation of the inverse

 1

 10

 100

 1000

 10 100 1000
 10

 100

 1000

 10000

ru
n
ti
m

e
 (

s
e
c
o
n
d
s
)

p
o
ly

n
o
m

ia
l
d
e
g
re

e

condition number

runtime "bounds default"
runtime "bounds adjusted"

npl "bounds default"
npl "bounds adjusted"

11 / 18

Motivation Applicability Theory Sparsity Accuracy Scaling with matrix properties Parallel scaling Comparison

Scaling with spectral properties

For the density matrix the performance depends on two parameters:

spectral width (the smaller the better)

HOMO-LUMO gap (the larger the better)

In both cases the polynomial degree can increase considerably
=⇒ CheSS less efficient.

 0

 50

 100

 150

 200

 0.001 0.01 0.1 1
 0

 500

 1000

 1500

 2000

 2500

 3000

ru
n

ti
m

e
 (

s
e

c
o

n
d

s
)

p
o

ly
n

o
m

ia
l
d

e
g

re
e

HOMO-LUMO gap (eV)
runtime, εmax-εmin=50.0 eV

runtime, εmax-εmin=100.0 eV
runtime, εmax-εmin=150.0 eV

npl, εmax-εmin=50.0 eV
npl, εmax-εmin=100.0 eV
npl, εmax-εmin=150.0 eV

12 / 18

Motivation Applicability Theory Sparsity Accuracy Scaling with matrix properties Parallel scaling Comparison

Parallel scaling

The most compute intensive part of CheSS is the matrix-vector
multiplications.

Easily parallelizable

identical for all operations

Example: Calculation of M−1 (runs performed with 16 OpenMP threads)

 0

 5

 10

 15

 20

 25

 30

 35

 500 1000 1500 2000 2500

s
p

e
e

d
u

p

number of cores

matrix size 12000
matrix size 24000
matrix size 36000

ideal

 4

 8

 16

 32

 64

 128

 128 256 512 1024 2048

ru
n

ti
m

e
(s

e
c
o

n
d

s
)

number of cores

matrix size 12000
matrix size 24000
matrix size 36000

ideal

13 / 18

Motivation Applicability Theory Sparsity Accuracy Scaling with matrix properties Parallel scaling Comparison

Extreme scaling

We have also performed extreme-scaling tests from 1536 to 16384 cores.

Example: Calculation of M−1 (runs performed with 8 OpenMP threads)

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

 2000 4000 6000 8000 10000 12000 14000 16000

s
p
e
e
d
u
p

number of cores

matrix size 96000
ideal

Given the small matrix (96, 000) the obtained scaling is acceptable.

We will try to further improve the scaling.
14 / 18

Motivation Applicability Theory Sparsity Accuracy Scaling with matrix properties Parallel scaling Comparison

Comparison with other methods: Inverse

Comparison of the matrix inversion between:

CheSS

SelInv

ScaLAPACK

LAPACK

 1

 10

 100

 2 4 8

 1
6

 3
2

 6
4

 1
2
8

ru
n
ti
m

e
 (

s
e
c
o
n
d
s
)

κ

matrix size 6000
 sparsity S: 97.95 %
 sparsity S

-1
: 88.45 %

CheSS

 1

 10

 100

 2 4 8

 1
6

 3
2

 6
4

 1
2
8

κ

matrix size 12000
 sparsity S: 98.93 %
 sparsity S

-1
: 93.73 %

SelInv

 1

 10

 100

 2 4 8

 1
6

 3
2

 6
4

 1
2
8

κ

matrix size 18000
 sparsity S: 99.27 %
 sparsity S

-1
: 95.65 %

ScaLAPACK

 1

 10

 100

 2 4 8

 1
6

 3
2

 6
4

 1
2
8

κ

matrix size 24000
 sparsity S: 99.45 %
 sparsity S

-1
: 96.66 %

LAPACK

 1

 10

 100

 2 4 8

 1
6

 3
2

 6
4

 1
2
8

κ

matrix size 30000
 sparsity S: 99.56 %
 sparsity S

-1
: 97.28 %

15 / 18

Motivation Applicability Theory Sparsity Accuracy Scaling with matrix properties Parallel scaling Comparison

Comparison with other methods: Density matrix

Comparison of the density matrix calculation between:

CheSS hybrid MPI/OpenMP

PEXSI hybrid MPI/OpenMP

CheSS MPI-only

PEXSI MPI-only

 10

 100

 1000

 50 100 150 200

ru
n
ti
m

e
 (

s
e
c
o
n
d
s
)

spectral width (eV)

matrix size 6000
 sparsity S: 97.95 %
 sparsity H: 92.97 %
 sparsity K: 88.45 %

CheSS hybrid
(160 MPI x 12 OMP)

 10

 100

 1000

 50 100 150 200

spectral width (eV)

matrix size 12000
 sparsity S: 98.93 %
 sparsity H: 96.25 %
 sparsity K: 93.73 %

PEXSI hybrid
(160 MPI x 12 OMP)

 10

 100

 1000

 50 100 150 200

spectral width (eV)

matrix size 18000
 sparsity S: 99.27 %
 sparsity H: 97.42 %
 sparsity K: 95.65 %

CheSS MPI-only
(1920 MPI x 1 OMP)

 10

 100

 1000

 50 100 150 200

spectral width (eV)

matrix size 24000
 sparsity S: 99.27 %
 sparsity H: 97.42 %
 sparsity K: 95.65 %

PEXSI MPI-only
(1920 MPI x 1 OMP)

 10

 100

 1000

 50 100 150 200

spectral width (eV)

matrix size 30000
 sparsity S: 99.27 %
 sparsity H: 97.42 %
 sparsity K: 95.65 %

16 / 18

Motivation Applicability Theory Sparsity Accuracy Scaling with matrix properties Parallel scaling Comparison

Conclusions

CheSS is a flexible tool to calculate matrix functions for DFT

can easily be extended to further functions

exploits sparsity of the matrices, linear scaling possible

works best for small spectral widths of the matrices

very good parallel scaling (both MPI and OpenMP)

Most important:
CheSS is about to be interfaced by ELSI!

17 / 18

Thank you for your attention!

	Motivation
	Applicability
	Theory
	Sparsity
	Accuracy
	Scaling with matrix properties
	Parallel scaling
	Comparison

