Efficient computation of sparse matrix functions for large scale electronic structure calculations: The CheSS library

Stephan Mohr, William Dawson, Michael Wagner, Damien

Caliste, Takahito Nakajima, Luigi Genovese

Barcelona Supercomputing Center

Outline

- History and motivation for CheSS
- Applicability of CheSS
- Short overview of the theory behind CheSS
- Various performance data

Motivation for CheSS

CheSS is a "spin-off" of the linear scaling version of BigDFT.

- localized basis set leads to sparse matrices
- we have to exploit this sparsity to reach linear scaling
- we did not find a package that fits our need
- ⇒ we created our own sparse matrix routines within BigDFT

We have the same situation in all DFT codes with a localized basis set \Longrightarrow we created a standalone library: CheSS

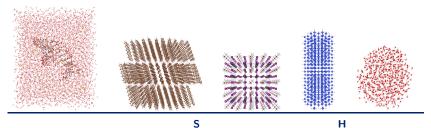
CheSS can be obtained for free from https://launchpad.net/chess

A paper is in review: https://arxiv.org/abs/1704.00512

Applicability of CheSS

CheSS performs best for matrices exhibiting a small spectral width.

Can this be obtained in practice?



system	#atoms	sparsity ϵ_{min} ϵ_{max}	κ	sparsity ϵ_{min} ϵ_{max} λ Δ_{HL}
DNA bulk pentacene	6876	98.96% 0.78 1.77 2.	26	98.46% -29.58 19.67 49.25 2.76 97.11% -21.83 20.47 42.30 1.03
perovskite Si nanowire water	706	93.24% 0.72 1.54 2.	16	76.47% -20.41 26.85 47.25 2.19 81.61% -16.03 25.50 41.54 2.29 90.06% -26.55 11.71 38.26 9.95

Basic idea

In CheSS we approximate matrix functions by Chebyshev polynomials:

$$p(\mathbf{M}) = \frac{c_0}{2} \mathbf{I} + \sum_{i=1}^{n_{pl}} c_i \mathbf{T}^i(\tilde{\mathbf{M}}) ,$$

with

$$\tilde{\mathbf{M}} = \sigma(\mathbf{M} - \tau \mathbf{I})$$
 ; $\sigma = \frac{2}{\epsilon_{max} - \epsilon_{min}}$; $\tau = \frac{\epsilon_{min} + \epsilon_{max}}{2}$

and

$$c_j = \frac{2}{n_{pl}} \sum_{k=0}^{n_{pl}-1} f\left[\frac{1}{\sigma} \cos\left(\frac{\pi(k+\frac{1}{2})}{n_{pl}}\right) + \tau\right] \cos\left(\frac{\pi j(k+\frac{1}{2})}{n_{pl}}\right).$$

Recursion relation for the Chebyshev polynomials:

$$\begin{array}{ll} \mathbf{T}^0(\tilde{\mathbf{M}}) = \mathbf{I} \;, & \qquad \qquad \text{Each column independent} \\ \mathbf{T}^1(\tilde{\mathbf{M}}) = \tilde{\mathbf{M}} \;, & \qquad \qquad \Rightarrow \text{ easily parallelizable.} \\ \mathbf{T}^{j+1}(\tilde{\mathbf{M}}) = 2\tilde{\mathbf{M}}\mathbf{T}^{j}(\tilde{\mathbf{M}}) - \mathbf{T}^{j-1}(\tilde{\mathbf{M}}) \;. & \qquad \Rightarrow \text{ linear scaling} \\ \end{array}$$

Available functions

CheSS can calculate those matrix functions needed for DFT:

- density matrix: $f(x) = \frac{1}{1+e^{\beta(x-\mu)}}$ (or $f(x) = \frac{1}{2} \left[1 - \operatorname{erf} \left(\beta(\epsilon - x) \right) \right]$)
- energy density matrix: $f(x) = \frac{x}{1 + e^{\beta(x \mu)}}$ (or $f(x) = \frac{x}{2} \left[1 \text{erf} \left(\beta(\epsilon x) \right) \right]$)
- matrix powers: $f(x) = x^a$ (a can be non-integer!)

We can calculate arbitrary functions by changing only the coefficients c_j !

Only requirement:

function f must be well representable by Chebyshev polynomials over the entire eigenvalue spectrum.

Sparsity and truncation

CheSS works with predefined sparsity patterns.

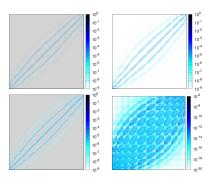
In general there are three:

- pattern for the original matrix M
- **p**attern for the matrix function $f(\mathbf{M})$
- auxiliary pattern to perform the matrix-vector multiplications

At the moment all of them must be defined by the user.

Typically: distances atoms / basis functions

- original matrix M
- exact calculation of M⁻¹ without sparsity constraints
- sparse calculation of M⁻¹ using CheSS within the sparsity pattern
- difference between Fig. 2 and Fig. 3



Accuracy – error definition

There are two possible factors affecting the accuracy of CheSS:

- error introduced due to the enforced sparsity (truncating the matrix-vector multiplications)
- error introduced by the Chebyshev fit

This also affects the definition of the "exact solution". Two possibilities:

- calculate the solution exactly and without sparsity constraints and then crop to the sparsity pattern. Shortcoming: violates in general the identity $f^{-1}(f(\mathbf{M})) = \mathbf{M}$
- 2 calculate the solution within the sparsity pattern, and define as exact one that which fulfills $\hat{f}^{-1}(\hat{f}(\mathbf{M})) = \mathbf{M}$

According error definitions:

$$\mathbf{U} \ \, w_{\hat{f}_{sparse}} = \frac{1}{|\hat{f}(\mathsf{M})|} \sqrt{\sum_{(\alpha\beta) \in \hat{f}(\mathsf{M})} \left(\hat{f}(\mathsf{M})_{\alpha\beta} - f(\mathsf{M})_{\alpha\beta}\right)^2}$$

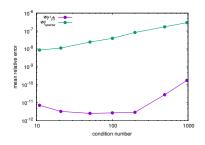
Accuracy

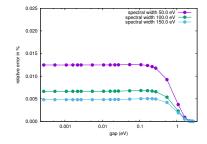
Inverse:

- $w_{\hat{f}^{-1}(\hat{f})}$: error due to Chebyshev fit basically zero
- $\mathbf{w}_{\hat{f}_{sparse}}$: error due to sparsity pattern very small

Density matrix:

- energy (i.e. Tr(KH)): relative error of only 0.01%
- slightly larger error for small spectral width: eigenvalues are denser, finite temperature smearing affects more



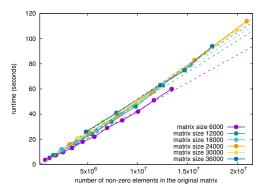


Scaling with matrix size and sparsity

Series of matrices with the same "degree of sparsity" (DFT calculations of water droplet of various size).

Example: calculation of the inverse

- Runtime only depends on the number of non-zero elements of M
- no dependence on the total matrix size

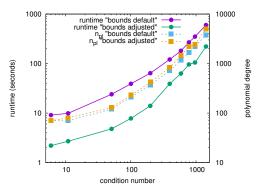


Scaling with spectral properties

CheSS is extremely sensitive to the eigenvalue spectrum:

- required polynomial degree strongly increases with the spectral width
- as a consequence the runtime strongly increases as well
- a good input guess for the eigenvalue bounds helps a lot

Example: calculation of the inverse

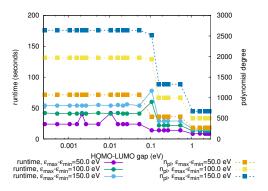


Scaling with spectral properties

For the density matrix the performance depends on two parameters:

- spectral width (the smaller the better)
- HOMO-LUMO gap (the larger the better)

In both cases the polynomial degree can increase considerably \implies CheSS less efficient.

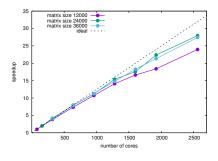


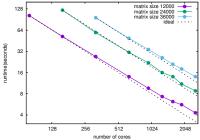
Parallel scaling

The most compute intensive part of CheSS is the matrix-vector multiplications.

- Easily parallelizable
- identical for all operations

Example: Calculation of \mathbf{M}^{-1} (runs performed with 16 OpenMP threads)

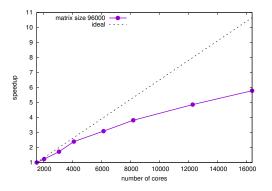




Extreme scaling

We have also performed extreme-scaling tests from 1536 to 16384 cores.

Example: Calculation of M^{-1} (runs performed with 8 OpenMP threads)



Given the small matrix (96,000) the obtained scaling is acceptable.

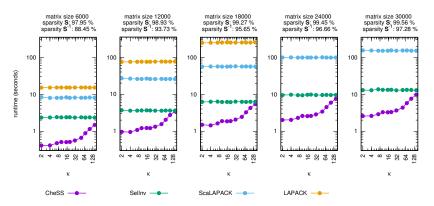
We will try to further improve the scaling.

Comparison with other methods: Inverse

Comparison

Comparison of the matrix inversion between:

- CheSS
- Sellny
- Scal APACK
- LAPACK

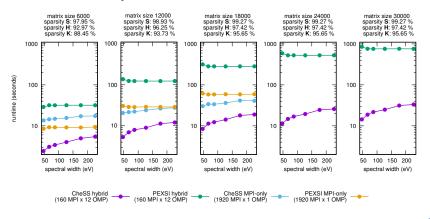


Comparison with other methods: Density matrix

Comparison

Comparison of the density matrix calculation between:

- CheSS hybrid MPI/OpenMP
- PEXSI hybrid MPI/OpenMP
- CheSS MPI-only
- PEXSI MPI-only



Conclusions

- CheSS is a flexible tool to calculate matrix functions for DFT
- can easily be extended to further functions
- exploits sparsity of the matrices, linear scaling possible
- works best for small spectral widths of the matrices
- very good parallel scaling (both MPI and OpenMP)

Most important: CheSS is about to be interfaced by ELSI!

