ELSI Connector Meeting 2017

wy29@duke.edu

ELSI: A Unified Software Interface for Kohn-Sham Electronic Structure Solvers

<u>Victor Yu</u> and the ELSI team

Department of Mechanical Engineering & Materials Science Duke University

Kohn-Sham Density-Functional Theory

Kohn-Sham Density-Functional Theory

Kohn-Sham Density-Functional Theory

L.M. Ghiringhelli et al., Towards a Common Format for Computational Materials Science Data, Psi-k Scientific Highlight of the Month 131, July 2016.

Kohn-Sham Density-Functional Theory

Materials Science Data, Psi-k Scientific Highlight of the Month 131, July 2016.

ELSI Connector Meeting 2017

wy29@duke.edu

The "Cubic Wall" in Kohn-Sham Density-Functional Theory

- DFT-PBE with FHI-aims
- Graphene monolayer (2D)
- From 4,050 to 7,200 atoms
- 14 numeric atom-centered orbitals per carbon atom

The <u>O(N³)</u> Kohn-Sham eigenproblem must be addressed by <u>all</u> electronic structure codes based on KS-DFT

Kohn-Sham Electronic Structure Solvers

A unified software interface and solver comparison platform ELSI Connector Meeting 2017

wy29@duke.edu

ELSI Timeline

ELSI Kick-Off Meeting, Duke University, Durham, 2017

ELSI: Connection between DFT Codes and KS Solvers

KS-DFT Codes

Create Hamiltonian and overlap matrices

- Different matrix storage strategies
- Different application programming interfaces
- Different programming languages

Solvers

Compute eigenvalues, eigenvectors, density matrix

ELSI: Connection between DFT Codes and KS Solvers

Create Hamiltonian and overlap matrices

- Convert data format and distribution automatically
- Analyze the problem:
 - Basis set size, sparsity, desired output, available computational resource, ... (<u>ongoing</u>)
- Suggest a solver with reasonable settings (*future*)

Compute eigenvalues, eigenvectors, density matrix

ELSI Connector Meeting 2017

Aug 2015

Jun 2016

ELSI Timeline

Electronic Structure Library Coding Workshop, ZCAM, Zaragoza, 2016

Philosophy of the ELSI Interface

Easy to implement

Designed to be flexible for rapid integration into a variety of KS-DFT codes

<u>Versatile</u>

Includes density matrix and eigensystem formalisms on equal footing

<u>Flexible</u>

All technical settings in solver libraries are adjustable for experienced users

API of ELSI interface

elsi_init
! BEGIN SCF LOOP
 elsi_set
 elsi_{dm | ev}
! END SCF LOOP
elsi_finalize

ELSI Timeline

First Release of ELSI: May 2017

http://elsi-interchange.org

- Software Package
 - ELSI interface
 - Current ELPA, libOMM, PEXSI
- Programming Language
 - Fortran 2003
 - C/C++ interface
- Functionalities
 - Eigenvalues and eigenvectors
 - Density matrix
 - Chemical potential
 - Occupation numbers

- Portability
 - GNU, Intel, PGI, IBM, Cray
 - Cori, Edison, Mira, Theta, Titan

Flexibility

- 2 matrix I/O formats
- 2 parallel modes
- Concurrent instances
- Tested in DGDFT, FHI-aims, NWChem (Global Arrays), SIESTA
- Scalability
 - (Hundreds of) thousands of MPI tasks

ELSI Connector Meeting 2017

wy29@duke.edu

Supported Matrix Formats

- a) 2D block-cyclic distributed dense storage (BLACS standard)
- b) 1D block distributed compressed column storage (PEXSI standard)
- c) 1D block distributed compressed row storage supported implicitly due to symmetry

0	0	1	1	0	0	1	1
		-	-			-	-
0	0	1	1	0	0	1	1
2	2	3	3	2	2	3	3
2	2	3	3	2	2	3	3
0	0	1	1	0	0	1	1
0	0	1	1	0	0	1	1
2	2	3	3	2	2	3	3
2	2	3	3	2	2	3	3

0	0	1	1	2	2	3	3
0	0	1	1	2	2	3	3
0	0	1	1	2	2	3	3
0	0	1	1	2	2	3	3
0	0	1	1	2	2	3	3
0	0	1	1	2	2	3	3
0	0	1	1	2	2	3	3
0	0	1	1	2	2	3	3

(a)

(b)

Auto-conversion between (a) and (b) when necessary

Example: BLACS input -> PEXSI format -> PEXSI solver -> BLACS output

Performance of the Solvers (ELSI May 2017)

- DFT-PBE with FHI-aims
- Graphene monolayer (2D)
- From 1,800 to 7,200 atoms
- 14 numeric atom-centered orbitals per carbon atom

PEXSI starts outperforming ELPA and libOMM at <u>3,000</u> and <u>7,000</u> atoms, respectively

V. Yu et al., ELSI: A Unified Software Interface for Kohn-Sham Electronic Structure Solvers, arXiv:1705.11191 [physics.comp-ph]. 10^{3} Edison (Intel Ivy Bridge) 80 nodes x 24 CPU cores per node 10 Time [s] O(N^{1.5}) 10 **O-O** ELPA **□−−**□ libOMM ♦ PEXSI 1070000 100800 25200 44800 **#** Basis functions

Performance of the Solvers (Today)

- DFT-PBE with FHI-aims
- Graphene monolayer (2D)
- From 800 to 7,200 atoms
- 14 numeric atom-centered orbitals per carbon atom

PEXSI starts outperforming ELPA and libOMM at 3,000 <u>800</u> and 7,000 <u>3,200</u> atoms, respectively!

9/13

Enhanced Feature: Energy-Weighted Density Matrix

	ELPA	libOMM	PEXSI
DM	$C_{DM}C_{DM}^{T}$	$W(2I_W - S_W)W^T$	$\operatorname{Im} \sum_{l=1}^{P} \frac{w_l^{DM}}{H - (z_l + \mu)S}$
EDM	$C_{EDM}C_{EDM}^{T}$	$W[(2I_W - S_W)H_W]W^T$	$\operatorname{Im} \sum_{l=1}^{P} \frac{w_l^{EDM}}{H - (z_l + \mu)S}$

- Pulay force (localized orbitals)
- Available with all three solvers
- Only computed when calling <u>elsi_get_edm</u>

Geometry optimization

ELSI Connector Meeting 2017

ELSI Timeline

Electronic Structure Library Coding Workshop, ICTP, Trieste, 2017

New MPI communicator for communications among all k-points and spins elsi_init(handle,...)

! Set MPI communicator elsi_set_mpi(handle,my_mpi_comm) elsi_set_mpi_all(handle,mpi_comm_all)

! Set spin and/or k-point elsi_set_spin(handle,n_spin,my_spin) elsi_set_kpt(handle,n_kpt,my_kpt,my_weight)

! Compute density matrices

elsi_dm_real(handle,my_H,my_S,my_DM,energy)

New Number of spins and my spin index elsi_init(handle,...)

! Set MPI communicator elsi_set_mpi(handle,my_mpi_comm) elsi_set_mpi_all(handle,mpi_comm_all)

! Set spin and/or k-point
elsi_set_spin(handle,n_spin,my_spin)
elsi_set_kpt(handle,n_kpt,my_kpt,my_weight)

! Compute density matrices

elsi_dm_real(handle,my_H,my_S,my_DM,energy)

New Number of k-points, my k-point index, and my k-point weight elsi_init(handle,...)

! Set MPI communicator elsi_set_mpi(handle,my_mpi_comm)

elsi_set_mpi_all(handle,mpi_comm_all)

! Set spin and/or k-point

elsi_set_spin(handle,n_spin,my_spin)
elsi_set_kpt(handle,n_kpt,my_kpt,my_weight)

! Compute density matrices

elsi_dm_real(handle,my_H,my_S,my_DM,energy)

- Minimal additions to the existing ELSI interface
- Capability to handle k-point and/or spin in parallel
- No overhead if not interested in k-point and/or spin

elsi_init(handle,...)

! Set MPI communicator

elsi_set_mpi(handle,my_mpi_comm)

elsi_set_mpi_all(handle,mpi_comm_all)

! Set spin and/or k-point

elsi_set_spin(handle,n_spin,my_spin)
elsi_set_kpt(handle,n_kpt,my_kpt,my_weight)

! Compute density matrices

elsi_dm_real(handle,my_H,my_S,my_DM,energy)

New Feature: CheSS and SIPs Solvers

<u>CheSS</u> (density matrix)

Fermi operator expansion with Chebyshev polynomials

O(N)

<u>SIPs</u> (eigensolution)

Sparse, iterative eigensolver based on spectrum slicing

 $\leq O(N^2)$

- Both solvers connected to ELSI
 - SOLVER = 4 (CheSS)
 - SOLVER = 5 (SIPs)
- Flexibility of the ELSI infrastructure: Given compatible matrix formats, a new solver can be quickly added to ELSI in hours
- Both are giving correct results
- Todo
 - Performance optimization
 - Benchmark

ELSI Connector Meeting 2017

wy29@duke.edu

ELSI Timeline

Future Plans & Acknowledgments

- Performance-optimized, up-to-date solver libraries
- Iterative solvers, e.g. Davidson and CG solvers from Quantum Espresso
- ELSI decision layer for automatic, optimal choice of solvers

- More matrix formats used in KS-DFT codes to be supported
- Integration of ELSI into KS-DFT codes for production-level usage
- ELSI workshop in 2018

ELSI is an NSF SI2-SSI supported software infrastructure project under Grant Number 1450280. Any opinions, findings, and conclusions or recommendations expressed here are those of the author(s) and do not necessarily reflect the views of NSF. 13/13