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Introduction

Images courtesy of internet resources

• Energy storage devices : Lithium 
Ion batteries

• In practice reliability / safety is a major issue

• Often related to stability of anode-
electrolyte interface 

• Need for accurate “bottom-up 
approach” to simulating these 
interfaces.

Anode-electrolyte interface at the atomic scales
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Introduction (cont.)

Images courtesy of B. Runnels et. al and internet resources

• Another example : Mechanics of Grain Boundaries - Tilt angle vs. GB Energy plot

• First principles calculations based on DFT : Workhorse of computational 
materials science — Many steps of Quantum Molecular Dynamics ! 

• Fundamental need : Computational ability to attack large systems efficiently 
and accurately. 

• Focus on non-insulating (metallic / semiconducting) systems.
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Introduction (cont.)

Images courtesy of B. Runnels et. al and internet resources
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Kohn-Sham Density Functional Theory

• The problem at hand : SCF Iterations
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Kohn-Sham Density Functional Theory

• The problem at hand :

• Linear Problem: Solve the Schrödinger equation in an efficient and scalable way. 

• Non-linear Problem: Achieve self-consistency in a robust fashion.

SCF Iterations
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Outline
• Introduction 

• Part I : Chebyshev Filtered Subspace Iterations (CheFSI) 
Within the Framework of Discontinuous Galerkin Density 
Functional Theory for Large Scale Abinitio Simulations 

• Part II : Complementary Subspace Strategy for confronting 
the Rayleigh-Ritz bottle neck 

• Part III : Periodic Pulay method for robust and efficient 
convergence acceleration of self-consistent field iterations

• Broad guiding principles : Maintain generality - as many systems as 
possible (metals, insulators…) 

• Reduce pre-constants.
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Part I: CheFSI within DGDFT

• The problem at hand : SCF Iterations
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Part I: CheFSI within DGDFT

• The problem at hand :

• Linear Problem: Solve the Schrödinger equation in an efficient and scalable way.

SCF Iterations
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Confronting the bottlenecks
• Observation 1 : Irrespective of the choice of solution method, 

having fewer degrees of freedom per atom is highly desirable.

• Typically results in a lower pre-factor for any algorithm of choice. 

• Plane-waves, Finite Differences, Finite Elements:

• Systematically improvable, highly accurate solutions. 

• A few hundred to thousands of DOFs per atom for chemical accuracy.

• Atom centered basis functions (Gaussians, Numerical Orbitals,…)
• Accuracy control is more involved: requires expertise, awareness of BSSE … 

• 10 - 15 DOFs per atom are often enough for chemical accuracy.

• Adaptive Local Basis (ALB) set.

• Systematically improvable, accurate solutions. 

• A few tens of DOFs per atom enough for chemical accuracy. 
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Confronting the bottlenecks (cont.)

• Observation 2 : The specific choice of algorithm matters 
• Traditional (cubic scaling) vs. lower complexity algorithms 

( Fermi Operator Expansion, Spectral Quadrature, Purification, 
Pole-Expansion and Selected Inversion, …)
• Range of applicability needs to be as broad as possible : Different materials 

systems (2D - 3D, metal-insulator, …), wide range of temperatures, …

• Traditional (cubic scaling) algorithms (Direct / Iterative  
diagonalization: ScaLAPACK, Variations of Preconditioned Conjugate 
Gradients, Lanczos, Polynomial filtering, spectrum slicing, … ) 

• Value of pre-constant matters in practical simulations. 

• Parallel scalability is important for large calculations.

• Combine Observations 1 and 2 
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Observation 1: Discontinuous Galerkin Density Functional Theory

• Adaptive Local Basis functions for an interior penalty 
Discontinuous Galerkin formulation of Kohn Sham DFT.

[1]	Lin,	Lu,	Ying,	E,	JCP	2012;	[2]	Zhang,	Lin,	Hu,	Yang,	Pask,	JCP	2017

• DG formalism allows solution of Kohn-Sham equations with discontinuous 
basis set : Number of desirable properties simultaneously. 

• Few 10s of DOFs per atom. 
• Systematically improvable. 

• Strictly local : identically zero outside prescribed subdomain, zero overlap 
across subdomains. 

• Orthonormal basis : standard, relatively well conditioned eigenvalue 
problem.

• How ?
• Partition domain into sub-domain (elements). 

• Solve Kohn-Sham equations in each (extended) element. 

• Basis is union of local Kohn-Sham solutions : Incorporates local materials physics. 

• Each of these steps can be done efficiently with good parallel scaling.
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Discontinuous Galerkin Density Functional Theory (cont.)

• Adaptive Local Basis Functions.

• Discretized Kohn-Sham equations :   

• Wavefunctions, density : 

• Energy : 

• Kohn-Sham Hamiltonian becomes :

[1]	Lin,	Lu,	Ying,	E,	JCP	2012;	[2]	Zhang,	Lin,	Hu,	Yang,	Pask,	JCP	2017
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Observation 2: Choice of Algorithmic Technique 
• Focus on traditional (cubic scaling) techniques - but choose technique with 

lowest pre-constant : Ensures full range of applicability. 

• Focus on iterative strategies - direct methods suffer from scaling issues, larger 
pre-constants. 

• But many iterative strategies require knowledge of good preconditioners : not 
easily achievable !

• Chebyshev Polynomial Filtered Subspace Iterations:

• Low pre-constant if efficient Hamiltonian matrix times block of wave-function vectors 
product is available. 

• Is known to far outperform other competing methods (observed in several codes 
PARSEC, ClusterES, …). 

• Works well in a molecular dynamics / geometry optimization setting : refinement of good 
guess of wave functions from previous step. 

• Basic idea goes back to the RITZIT code by Rutishauser (1970), application to DFT by 
Zhou, Chelikowsky and Saad (2000s).
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Observation 2: Chebyshev Polynomial Filtered Subspace Iterations 

• pm( ) is the Chebyshev polynomial of degree m. 
• Hscaled is a scaled version of the Hamiltonian whose occupied part of the 

spectrum lies below -1 and unoccupied part lies in [-1,1]. 
• Y is the block of eigenvectors. 
• Requires Hamiltonian times block of vectors product.

• Subspace iteration
• Orthonormalize a guess block of vectors Y. 

• Solve the Rayleigh-Ritz problem on a projected (occupied) subspace : (YTHY)Q = µQ. 

• Subspace rotation : Set Y = YQ. 

• Accelerate this by polynomial filtering.

• DFT setting : Do this on every SCF step.
• Successively improves wavefunction guess with 

progress of SCF.

• Chebyshev Polynomial Filtering: Compute pm(Hscaled)Y
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Implementation of CheFSI in DG-DFT
• The DG Hamiltonian

• Sparse. 

• Has a block structure. 
• Relatively low spectral width : High 

filter orders are not necessary.

• Hamiltonian times vector product : 2 level parallelization.
• 1st level: Domain decomposition based on DG partition 

- nearest neighbor communication. 
• 2nd level: Band parallelization.

• Subspace iteration parallelization
• Subspace problem size < 25,000 * 25,000 

• Dense problem - ScaLAPACK solution. 

• Parallelized using 1 row of process grid (= # of DG elements).
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Implementation of CheFSI in DG-DFT (cont.)
• The nuances of an on-the-fly basis.

• The basis functions in DG-DFT change on every SCF step. 
• Wave-function guess from previous SCF step has to be expressed using the basis functions of the current SCF step  
• Compute : Ynew = (Vnew)T Vold Yold.  
• Here, Y : wave-function expansion coefficients, V : basis functions.
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Results

• CheFSI : Chebyshev Polynomial Filtered Subspace Iterations. 
• ScaLAPACK : Direct diagonalization of DG Hamiltonian. 

• PEXSI : Pole Expansion and Selected Inversion :  Sparse direct method with lower asymptotic 
computational complexity and very favorable parallel scaling properties.

• Two representative systems :
• Graphene2D : Two dimensional graphene layer (unit cell : 180 atoms). 
• Li3D : Bulk Lithium Ion battery material with atoms of Li, C, F, O, P, H. (unit cell: 318 atoms) 
• Unit cells repeated to obtain larger system sizes (up to ~ 8600 atoms in 3D, ~12500 atoms 

in 2D).

• Comparison of CheFSI with 2 alternatives in DG-DFT
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Results : SCF Convergence

• Parameters carefully tuned for similar SCF convergence 
• ScaLAPACK : reference 

• CheFSI : Adjust filter order 
• PEXSI: Adjust number of poles, etc. 

• Time to solution per SCF step compared.
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Results: Strong Scaling Efficiency

• Graphene2D6480 : 6480 atoms, ~ 13,000 bands• Li3D2*2*2 : 2544 atoms, ~  4400 bands

• Overall, CheFSI has a parallel scaling efficiency of about 40 - 50 % for up to about 12,500 processors. 

• Scaling performance better than ScaLAPACK but not as good as PEXSI. 
• Beyond ~ 8000 bands, the relatively poorly scaling subspace problem starts to dominate. 
• The filtering routine continues to perform very well (~ 80 % for 3D system, ~ 90 % for 2D system). 

Similar to PEXSI or better.
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Results : Weak Scaling Efficiency
• Anticipate CheFSI time will quadruple on doubling system size. 

• Increase system size n fold, increase number of processors by m fold, graph should have a slope of n2/m. 

• Li3D : Li3D1*1*1, Li3D1*1*2, Li3D1*2*2 

• Graphene2D :  Graphene2D180, Graphene2D720, Graphene2D2880

• CheFSI performance consistent with quadratic scaling with system size as long as subspace iteration 
cost does not dominate. 

• Weak scaling efficiency is ~ 70 %, Filtering step scaling efficiency is ~ 90 %



Amartya S. Banerjee
Amartya Banerjee : Pushing the Envelope of Large Scale First Principles Simulations 

of Non-Insulating Systems 
MolSSI Workshop and ELSI Conference, Richmond, VA ; August 2018

Results : Wall time benchmarks

System No. of Atoms No. of bands Wall Time (s)  
ScaLAPACK

Wall Time (s)  
PEXSI

Wall Time (s) 
CheFSI

Li3D3*3*3 

13,824 procs 

8586 ~15,000 3323 3784 170

Graphene
2D11520 

13,824 procs

11520
  

> 23000 2473 426 105

• CheFSI is up to an order of magnitude faster.
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Results : Wall time benchmarks on ~ 55,000 cores

System No. of Atoms No. of bands Wall Time (s) 
CheFSI

Li3D3*3*3 

13,824 procs 

8586 ~15,000 90

Graphene
2D11520 

13,824 procs

11520
  

> 23000 75

• 50 - 60 % time spent on subspace problem 
• More recently (softer pseudopotentials, optimization of parameters) : 

Li3D system ~ 70 s, Graphene2D ~ 60 s
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Summary : Part I (CheFSI within DG-DFT)

• Chebyshev Polynomial Filtered Subspace Iterations seem to 
work extremely well within the discontinuous formulation of 
DFT. 

• Simulation wall times can be up to an order of magnitude 
shorter than competing methods. 

• Allows complex materials systems with many thousands of 
atoms to be routinely attacked: Wavefunction and density 
extrapolation for more effective use of CheFSI for MD 
simulations. 

• Overall performance and strong parallel scalability of CheFSI 
is held down by the wall time and poor scalability of the 
subspace problem solution : Remedies in Part II ! 
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Summary : Part I (CheFSI within DG-DFT)

• Chebyshev Polynomial Filtered Subspace Iterations seem to 
work extremely well within the discontinuous formulation of 
DFT. 

• Simulation wall times can be up to an order of magnitude 
shorter than competing methods. 

• Allows complex materials systems with many thousands of 
atoms to be routinely attacked: Wavefunction and density 
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Outline
• Introduction 

• Part I : Chebyshev Filtered Subspace Iterations (CheFSI) 
Within the Framework of Discontinuous Galerkin Density 
Functional Theory for Large Scale Abinitio Simulations 

• Part II : Complementary Subspace Strategy for confronting 
the Rayleigh-Ritz bottle neck 

• Part III : Periodic Pulay method for robust and efficient 
convergence acceleration of self-consistent field iterations

• Broad guiding principles : Maintain generality - as many systems as 
possible (metals, insulators…) 

• Reduce pre-constants.
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Part II: Complementary Subspace Strategy

• The problem at hand :

• Linear Problem: Solve the Schrödinger equation in an efficient and scalable way.

SCF Iterations
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Complementary Subspace Strategy (cont.)
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Complementary Subspace Strategy (cont.)

• Focus on the Rayleigh-Ritz (subspace diagonalization) + subspace 
rotation steps in the DG-CheFSI cycle
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Complementary Subspace Strategy (cont.)

• Large benchmark problems : 50 - 60 % time spent on subspace problem

• Need new strategy for the Rayleigh-Ritz and Subspace Rotation steps

• Highly Scalable 

• Can be made scalable (parallel dense 
linear algebra : SUMMA, GEMM 2.5D )

• Not intrinsically scalable,  
• Consumes significant fraction of 

subspace problem time
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Complementary Subspace Strategy within DG-CheFSI

Image courtesy of internet resources

• Electronic occupation function (Fermi-Dirac) :

• At reasonable electronic 
temperatures,only a small fraction 
of states are partially occupied

• Can work with just these few 
states !

• Allows projected density matrix to be written as :

• The matrix C is related to the Nt top few (~ 5 - 10 % for metals at room 
temperature) eigenstates of the projected Hamiltonian matrix

• DGDFT : Full density matrix can be constructed from projected density matrix in 
an efficient and scalable manner.

• Fermi and occupations level need to be solved for in a suitable way.
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Complementary Subspace Strategy (cont.)

Image courtesy of internet resources

• Similar ideas : “Hole Density Matrix” (Mazziotti, 2002, 2003; Bowler et. al, 2016) , 
“Partial Rayleigh-Ritz Method” ( Guo et. al, 2016) , “Fermi Operator 
Splitting” (Gavini et. al, 2017)
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Complementary Subspace Strategy (cont.)

Image courtesy of internet resources

• Complementary subspace strategy : “approximation to Density Matrix”

• Not necessarily of lower computational complexity, but lower pre-factor and 
can lead to significantly lower computational wall times.

• Adjustable parameters : Accuracy of top states, how many top states.

• How to compute the matrix C ? Compute top states of projected Hamiltonian via 
iterative solvers : LOBPCG (unpreconditioned) or 2nd level of CheFSI !

• “Two level CheFSI scheme” : CS2CF

• First or top level CheFSI evaluates subspace of occupied states of full Hamiltonian

• Second or inner level CheFSI evaluates fractionally occupied states of 
projected Hamiltonian (small spectral width, very low filter order)

• Parallelizes easily : Most operations are parallel dense GEMMs (ScaLAPACK)
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Results : Choice of Systems

• Wide variety of 
materials systems 
tested out : 
disordered bulk 
insulator, 2D-semi 
metal, 
semiconductor, bulk 
crystalline metals, 
etc… 

• Unit cells of these 
materials replicated 
along X-Y-Z axes to 
obtain larger system 
sizes.
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Results : SCF Convergence

• SCF converges at similar 
rates as original CheFSI
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Results : Energy and Force Accuracy

• Energies and forces compare to 2e-4 a.u. or better 
accuracy w.r.t reference standard CheFSI results                
(< discretization error).
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Results : Computational Efficiency

• Largest non-insulating systems: Subspace diagonalization and rotation step 
times brought down by factors of ~ 3.7 - 7.8 

• Insulating system : Subspace diagonalization and rotation step time brought 
down by factor of 60
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Results : Computational Efficiency (cont.)

• Overall subspace problem 
construction and solution wall 
time is brought down by a 
factor of  ~ 1.7 - 2.2 for all 
examples. 

• Gains can be made more 
significant by use of alternate 
smearing schemes (Gaussian 
/ Methfessel-Paxton, etc.)
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Results :SCF iteration wall times (cont.)

• SCF iteration wall times with DGDFT-CS2CF
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Results :SCF iteration wall times and Ab initial MD

• SCF iteration wall times with DGDFT-CS2CF and ELPA
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Results :SCF iteration wall times and Ab initial MD

• SCF iteration wall times with DGDFT-CS2CF and ELPA
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Results :SCF iteration wall times and Ab initial MD

• SCF iteration wall times with DGDFT-CS2CF and ELPA

• Abinitio MD simulation example : 10 * 10 * 10 Diamond Si system            
8000 atoms; 32,000 electrons.

• 34,560 MPI tasks, 12 * 12 * 12 DGDFT partition

• 300 K simulation, 2.5 fs time step, NVE

• 1 ps simulation takes ~ 28 hours (51 s / SCF step)

• Drift remains small (<= 1e-5 Ha / atom picosecond) 
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Summary & Future Directions: Part II (CS2CF within DG-DFT)

Image courtesy of internet resources

• Complementary subspace strategy to confront Rayleigh-Ritz 
bottleneck (particularly : metallic systems). 

• Two level CheFSI strategy (CS2CF) implemented in DG-DFT. 

• Abinitio MD / geometry optimization of complex materials systems 
with thousands of atoms can be routinely carried out on moderate 
resources. 

• Applications in various materials systems. 

• Next bottleneck to confront : orthonormalization !                          
Ways to reduce prefactor ? 

• Spectrum-Slicing strategies ?
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Outline
• Introduction 

• Part I : Chebyshev Filtered Subspace Iterations (CheFSI) 
Within the Framework of Discontinuous Galerkin Density 
Functional Theory for Large Scale Abinitio Simulations 

• Part II : Complementary Subspace Strategy for confronting 
the Rayleigh-Ritz bottle neck 

• Part III : Periodic Pulay method for robust and efficient 
convergence acceleration of self-consistent field iterations

• Broad guiding principles : Maintain generality - as many systems as 
possible (metals, insulators…) 

• Reduce pre-constants.
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Part III : Periodic Pulay Mixing

• The problem at hand : SCF Iterations
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Part III : Periodic Pulay Mixing

• The problem at hand :

• Non-linear Problem: Robust attainment of self-consistency.

SCF Iterations
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Mixing Schemes within DFT

• Required for convergence acceleration. 

• Total simulation wall time strongly influenced (1st - order effect). 

• Many mixing schemes in the literature.

• Basic mathematical setup :

• Given electron density • Evaluation of new electron 
density from given density

• The residual

• Convergence in the neighborhood of a solution dictated by 
properties of Jacobian evaluated at solution.
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Mixing Schemes within DFT (cont.)

• Linear mixing : Under relaxed fixed point iteration

• Guaranteed to converge for small enough damping. 

• Extremely slow and rarely used in practice.

• In practice (most widely used) : Pulay mixing (DIIS) 
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Mixing Schemes within DFT (cont.)

• Pulay mixing (DIIS): A quasi-Newton Broyden type method

• Approximation of inverse Jacobian 

• Can stagnate or perform poorly in complex materials
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Periodic Pulay Mixing

• Combine strategies : Pulay and Linear mixing 

• Heuristic : Combination of strategies likely to help escape   meta-
stable wells. 

• Wavelength analysis : Linear mixing (or damping) eliminates high 
frequency components of residual most effectively                        
Anderson extrapolation damps lower frequency components. 

• Has lead to highly efficient and scalable linear solver -  
Alternating-Anderson Accelerated Jacobi (AAJ) method    
(Pratapa, Suryanarayana, Pask : J. Comp. Phys., vol. 306, 2016). 

• Application of AAJ to SCF iterations : Periodic Pulay Mixing
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Periodic Pulay Mixing (cont.)

• Extremely easy to integrate into existing electronic structure 
codes.

• Implemented in DG-DFT, ClusterES and SIESTA
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Results
• Variety of materials systems chosen : insulators, conductors, large 

inhomogeneities, different geometries, magnetic systems, etc.

• Convergence statistics : fixed mixing parameters, varying histories, periods



Amartya S. Banerjee
Amartya Banerjee : Pushing the Envelope of Large Scale First Principles Simulations 

of Non-Insulating Systems 
MolSSI Workshop and ELSI Conference, Richmond, VA ; August 2018

Results (cont.)
• Convergence behavior
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Periodic Pulay: n=5, k=2
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Pulay: n=6
Periodic Pulay: n=6, k=2
Periodic Pulay: n=6, k=3

SiC slab

• Convergence statistics for different mixing parameters (fixed histories, etc.)

Pd Bulk
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Summary : Part III (Periodic Play Mixing)

• Periodic Pulay Mixing combines linear mixing with periodic 
Anderson / Pulay extrapolation. 

• Performance gains of up to 2 - 3 in most systems. 
• Convergence achieved even in many difficult systems.

• Rigorous mathematical understanding is now emerging (M. Benzi et. al)

Bulk Iron at low temperatures
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Thank You !


