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Outline

» Direct solver for Kohn-Sham equations discretized by finite
differences

» Scalable O(N) solver

» Towards GPU
— BML library
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Find invariant subspace solution of DFT
equations for large numerical basis set

= DFT solution as a set of N eigenvectors of length M

T
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E =Tr(PH) + f(p) = Tr((WTHY)F) + f(p)
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Direct solver (vs. SCF)

« Minimize energy functional of fundamental variables
- ¥, f1,...,fy (wave functions + occupations)
— Other quantities are derived quantities (elec. density, potential)

- Compute gradient of nonlinear Kohn-Sham energy functional
— VEgs = 2[HY — Y (WYTHY)]

» Repeat until convergence

— Update wave functions
» Block Preconditioned steepest-descent with Anderson acceleration
« Block Nonlinear CG (Polak-Ribiere)

— Update occupation numbers
- Diagonalize H in projected subspace spanned by wave functions

* Possibly mix newly computed DM with previous DM
— Inner optimization loop [Marzari & Vanderbilt, PRL, 1997] for metals
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Our Finite difference implementation

 Multigrid preconditioner applied to steepest descent
directions

— Similar to diagonal “frequency” preconditioner used in Plane-Waves
codes

— [JLF, Bernholc, PRB 2000]

» Mixed precision
— Electronic wave functions are represented in single precision
— Accumulation done in double precision for all dot products
— [JLF et al., SC16 Proceedings]

* Nonorthogonal formulation

B = 2 (S g (D)4 Flol+ 3 (57); 1 (WVeud X1)
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Repetitive solve at consecutive MD steps

« Molecular dynamics (MD) of liquid water

» 64 molecules with periodic boundary conditions
« Convergence for 5 MD steps

« N=256 (no unoccupied statesl?)_z |
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Find sparsity in solution to reduce
computational complexity

= DFT solution as a set of nonorthogonal localized functions
(auxiliary basis set) spanning same subspace as exact
solution

Single particle Density Matrix:

- Off-diagonal elements decay A~ T
H Exponentially away from diagonal X=C"FC
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Sparsity in solution corresponds to physical
locality

= \We prescribe sparsity based on physical distances
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We make use of physical locality in parallel

strategy

» Parallel domain
decomposition

¢ Subdomains

— 16x16x32 (close to strong
scaling limit)

* Prescribe sparsity (spatial
localization of solution) a
priori

* Direct minimization of DFT
energy functional with
localization constraints
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Controllable accuracy

 Error in relevant physical quantities
(forces acting on atoms) decays
exponentially with localization

radius
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Localizatiyon radius (Bohr)

Localization regions of size ~9 Bohr
(contains ~50 atoms)
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How about the occupation/single particle
density matrix?

* For N~2000, ScaLAPACK PDSYEV
— O(N3), but small compared to everything else
— [JLF, Bernholc, PRB 2000]

 For larger N, and large number of MPI tasks, becomes
bottleneck

— Setting up matrices is actually bottleneck!

» Use sparsity of DM
— Sparse linear algebra in parallel is hard!

U

%NOAK RIDGE

ional Laboratory



Strategy for insulators, with only fully
occupied states, case X=S-1

1T
P=0OS O
* Only need elements “close” to diagonal = NT =
' ° S, =(r) 4,(r)
- Off-diagonal elements decay exponentially [Benzi et al.]

« Accumulate on each MPI task principal submatrices of S corresponding
to “closest” elements

— Solve for S, with ILUO-preconditioned GMRES
— Compute subset of columns of St on each processor

S S
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Data communication algorithm for matrix elements
(applied before and after solve)
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Send data to left neighbor, recv. from right neighbor
and merge
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Data communication algorithm:
repeat with received data
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Data communication algorithm:
Repeat in left-right direction
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Data communication algorithm:
Repeat in Y (and Z-directions) using accumulated data
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Data communication algorithm:
Repeat in Y (and Z-directions)
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Data communication algorithm:
Accumulated data

%()AK RIDGE

National Laboratory



Merge received data with local CSR data

« Consider row j of local data (with global column indices):

PE i+1;
0 | 3 1.8 ] 5 16 2

insert

add
2 | 5 | 8 | 11 0| 3|16

Overlap with communication

PE I:
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Controllable accuracy

* Error in relevant physical quantities
(forces acting on atoms) decays
exponentially with matrix cutoff
radius

* [Osei-Kuffor, JLF, PRL 2014]

Matrix cutoff radius (Bohr)

Principal submatrix of size ~4000x4000
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An O(N) scalable implementation: MGmol
code

* O(N) operations for N electrons

- Parallel domain decomposition — Each processor
needs to communicate only with processors within
a limited radius

— Localized electronic orbitals
— Local solver to compute selected elements of St

* The only global coupling is through a Coulomb
Interaction term

— Poisson problem solved with Multigrid-preconditioned
CG
* Open source
— https://github.com/linl/mgmol
¥ OAK RIDGE
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Scalability, time-to-solution O(N/p)

« Weak scaling on the full Sequoia machine
— IBM/BGQ
— 1 MPI task/core, 4 threads/MPI task
— No. Processors proportional to problem size — Constant time-to-

solution Number of MPI tasks
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Full Sequoia run: Liquid water with
1,179,648 atoms and 1,572,864 MPI tasks

Actual system size
computed

%OAK RIDGE

National Laboratory



Excellent agreement with standard Plane
Waves benchmark

* Validation for dynamic 3 |} T o b T

O(N) (MGmol)

properties
— Pair-correlation function

» Comparison with O(N3) 5
(Plane-Waves) result for %
relatively “small”
problem

— 1536 atoms
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distance (Bohr)

¥, OAK RIDGE

al Labor



Divide & Conquer for matrices

 Solving principal submatrix problems in parallel
— Use values “close to center” combined with others computed by other
parallel tasks
* Above
— computing inverse of Gram matrix

» Generalization: compute single particle Density Matrix in
basis of localized orbitals

— Nonorthogonal purification based on SP2 [Niklasson, Weber,
Challacombe, J. Chem. Phys. 2005]
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Density matrix computation

« SP2 algorithm applied to principal submatrix
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DM solver in practice

* For each MPI task

— Build sparse principal submatrices H and S matrices from elements
computed by “nearest” other MPI tasks

— Convert sparse matrices to dense matrices

— Solve for DM
« using SP2 (~15 iterations)/LAPACK dsyev

— Distribute “local” DM columns to “n t” other MPI tas
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Accuracy Results

1 unoccupied state/molecule
 Localized orbitals with R=10 Bohr

Radius (Bohr) Principal sub- error
matrix size

Inf. 2560 0.
20. 2400 2.9x10+4
15 1566 3.8x10+4
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Using a third party library for DM solver?

* DFT codes typically do not rely on many third party library
beside BLAS/LAPACK/ScaLAPACK

* |s it going to change with new architectures, in particular
nodes with GPU accelerators?

— Large effort needed to port codes
— Harder to get performance

* Library of DM solvers on the node (SP2,...)?

— The Basic Matrix Library (BML) for Quantum Chemistry is an attempt
In that direction
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BML (https://github.com/lanl/bml)

* The basic matrix library (BML) is a collection of various
matrix data formats (in dense and sparse) and their
associated algorithms for basic matrix operations

* Application programming interfaces (API) available for both
C and FORTRAN

 Current status of this library allows us to use two different
formats for representing matrix data: dense, sparse
(ELLPACK, ELLSORT)

* In development
— Sparse CSR format

- <@rixmoerations using MAGMA (available soo

« A Matrix-matrix multiplication takes 3 ms for N=4000 on NVIDIA GPU
P100 ;?‘,OAK RIDGE
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