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Outline

• Direct solver for Kohn-Sham equations discretized by finite 
differences

• Scalable O(N) solver

• Towards GPU

– BML library
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Find invariant subspace solution of DFT 
equations for large numerical basis set

▪ DFT solution as a set of N eigenvectors of length M

TFP =( )N 1= 10  if

Number of rows and columns 

grows with problem size!
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Function index

E = 𝑇𝑟 𝑃𝐻 + 𝑓 𝜌 = 𝑇𝑟 (Ψ𝑇𝐻Ψ)𝐹 + f(ρ)
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Direct solver (vs. SCF)

• Minimize energy functional of fundamental variables

– Ψ, 𝑓1,… ,𝑓𝑁 (wave functions + occupations)

– Other quantities are derived quantities (elec. density, potential)

• Compute gradient of nonlinear Kohn-Sham energy functional

– ∇𝐸𝐾𝑆 = 2[𝐻Ψ−Ψ(Ψ𝑇𝐻Ψ)]

• Repeat until convergence

– Update wave functions

• Block Preconditioned steepest-descent with Anderson acceleration

• Block Nonlinear CG (Polak-Ribiere)

– Update occupation numbers

• Diagonalize H in projected subspace spanned by wave functions

• Possibly mix newly computed DM with previous DM

– Inner optimization loop [Marzari & Vanderbilt, PRL, 1997] for metals
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Our Finite difference implementation

• Multigrid preconditioner applied to steepest descent 
directions

– Similar to diagonal “frequency” preconditioner used in Plane-Waves 
codes

– [JLF, Bernholc, PRB 2000]

• Mixed precision

– Electronic wave functions are represented in single precision

– Accumulation done in double precision for all dot products

– [JLF et al., SC16 Proceedings]

• Nonorthogonal formulation
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Repetitive solve at consecutive MD steps

• Molecular dynamics (MD) of liquid water

• 64 molecules with periodic boundary conditions

• Convergence for 5 MD steps

• N=256 (no unoccupied states)

tolerance



7

Find sparsity in solution to reduce 
computational complexity

▪ DFT solution as a set of nonorthogonal localized functions 
(auxiliary basis set) spanning same subspace as exact 
solution
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Function index

TXP =

C=

TFCCX −−= 1

Single particle Density Matrix:

Off-diagonal elements decay

Exponentially away from diagonal
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Sparsity in solution corresponds to physical 
locality

▪ We prescribe sparsity based on physical distances
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We make use of physical locality in parallel 
strategy

• Parallel domain 
decomposition

• Subdomains

– 161632 (close to strong 
scaling limit)

• Prescribe sparsity (spatial 
localization of solution) a 
priori

• Direct minimization of DFT 
energy functional with 
localization constraints

PE0 PE1 PE2 …
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Controllable accuracy

• Error in relevant physical quantities 
(forces acting on atoms) decays 
exponentially with localization 
radius

Localization regions of size ~9 Bohr

(contains ~50 atoms)
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How about the occupation/single particle 
density matrix?

• For N~2000, ScaLAPACK PDSYEV

– O(N3), but small compared to everything else

– [JLF, Bernholc, PRB 2000]

• For larger N, and large number of MPI tasks, becomes 
bottleneck

– Setting up matrices is actually bottleneck!

• Use sparsity of DM

– Sparse linear algebra in parallel is hard!

Matrix divide & conquer algorithm:
“Global” matrix made of blocks computed by “local” solves 
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Strategy for insulators, with only fully 
occupied states, case X=S-1

• Only need elements “close” to diagonal

• Off-diagonal elements decay exponentially [Benzi et al.]

• Accumulate on each MPI task principal submatrices of S corresponding 
to “closest” elements

– Solve for Sk with ILU0-preconditioned GMRES

– Compute subset of columns of S-1 on each processor

TSP = −1
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Data communication algorithm for matrix elements 
(applied before and after solve)
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Send data to left neighbor, recv. from right neighbor 
and merge
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Data communication algorithm:
repeat with received data
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Data communication algorithm:
Repeat in left-right direction
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Data communication algorithm:
Repeat in Y (and Z-directions) using accumulated data
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Data communication algorithm:
Repeat in Y (and Z-directions)
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Data communication algorithm:
Accumulated data
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Merge received data with local CSR data

• Consider row j of local data (with global column indices):

PE i+1:

PE i:

Overlap with communication

0 3 8 5 16 2

2 5 8 11 0 3 16

add insert
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Controllable accuracy

• Error in relevant physical quantities 
(forces acting on atoms) decays 
exponentially with matrix cutoff 
radius

• [Osei-Kuffor, JLF, PRL 2014]

Principal submatrix of size 40004000
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An O(N) scalable implementation: MGmol
code

• O(N) operations for N electrons

• Parallel domain decomposition — Each processor 
needs to communicate only with processors within 
a limited radius

– Localized electronic orbitals

– Local solver to compute selected elements of S-1

• The only global coupling is through a Coulomb 
interaction term

– Poisson problem solved with Multigrid-preconditioned 
CG

• Open source

– https://github.com/llnl/mgmol
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Scalability, time-to-solution O(N/p)

• Weak scaling on the full Sequoia machine

– IBM/BGQ

– 1 MPI task/core, 4  threads/MPI task

– No. Processors proportional to problem size → Constant time-to-
solution 

• Liquid water

• 1 MD step in 1.5 minutes

[JLF et al., SC16 Proceedings]
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Full Sequoia run: Liquid water with 
1,179,648 atoms and 1,572,864 MPI tasks

Actual system size

computed



25

Excellent agreement with standard Plane 
Waves benchmark

• Validation for dynamic 
properties

– Pair-correlation function

• Comparison with O(N3) 
(Plane-Waves) result for 
relatively “small” 
problem

– 1536 atoms



26

Divide & Conquer for matrices

• Solving principal submatrix problems in parallel

– Use values “close to center” combined with others computed by other 
parallel tasks

• Above

– computing inverse of Gram matrix

• Generalization: compute single particle Density Matrix in 
basis of localized orbitals

– Nonorthogonal purification based on SP2 [Niklasson, Weber, 
Challacombe, J. Chem. Phys. 2005]
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Density matrix computation

• SP2 algorithm applied to principal submatrix

SP2H DM
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DM solver in practice

• For each MPI task

– Build sparse principal submatrices H and S matrices from elements 
computed by “nearest” other MPI tasks

– Convert sparse matrices to dense matrices

– Solve for DM

• using SP2 (~15 iterations)/LAPACK dsyev

– Distribute “local” DM columns to “nearest” other MPI tasks

Communications
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Accuracy Results

• H2O512

• 1 unoccupied state/molecule

• Localized orbitals with R=10 Bohr

Radius (Bohr) Principal sub-

matrix size

error

Inf. 2560 0.

20. 2400 2.9x10-4

15 1566 3.8x10-4
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Using a third party library for DM solver?

• DFT codes typically do not rely on many third party library 
beside BLAS/LAPACK/ScaLAPACK

• Is it going to change with new architectures, in particular 
nodes with GPU accelerators?

– Large effort needed to port codes

– Harder to get performance

• Library of DM solvers on the node (SP2,…)?

– The Basic Matrix Library (BML) for Quantum Chemistry is an attempt 
in that direction
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BML (https://github.com/lanl/bml)

• The basic matrix library (BML) is a collection of various 
matrix data formats (in dense and sparse) and their 
associated algorithms for basic matrix operations

• Application programming interfaces (API) available for both 
C and FORTRAN

• Current status of this library allows us to use two different 
formats for representing matrix data: dense, sparse 
(ELLPACK, ELLSORT)

• In development

– Sparse CSR format

– Dense matrix operations using MAGMA (available soon)

• A Matrix-matrix multiplication takes 3 ms for N=4000 on NVIDIA GPU 
P100
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