Finite difference DFT solver: Direct functional minimization with eigensolver in projected subspace

Jean-Luc Fattebert
Computational Sciences & Engineering Division
Outline

- Direct solver for Kohn-Sham equations discretized by finite differences
- Scalable O(N) solver
- Towards GPU
  - BML library
Find invariant subspace solution of DFT equations for large numerical basis set

- DFT solution as a set of $N$ eigenvectors of length $M$

$$
\Psi = (\psi_1 \ldots \psi_N) \\
P = \Psi F \Psi^T \quad 0 \leq f_i \leq 1
$$

$$
E = Tr(PH) + f(\rho) = Tr\left((\Psi^T H \Psi) F\right) + f(\rho)
$$

Number of rows and columns grows with problem size!
Direct solver (vs. SCF)

• Minimize energy functional of fundamental variables
  – $\Psi, f_1, \ldots, f_N$ (wave functions + occupations)
  – Other quantities are derived quantities (elec. density, potential)

• Compute gradient of nonlinear Kohn-Sham energy functional
  – $\nabla E_{KS} = 2[H\Psi - \Psi (\Psi^T H \Psi)]$

• Repeat until convergence
  – Update wave functions
    • Block Preconditioned steepest-descent with Anderson acceleration
    • Block Nonlinear CG (Polak-Ribiere)
  – Update occupation numbers
    • Diagonalize H in projected subspace spanned by wave functions
    • Possibly mix newly computed DM with previous DM
Our Finite difference implementation

• Multigrid preconditioner applied to steepest descent directions
  – Similar to diagonal “frequency” preconditioner used in Plane-Waves codes
  – [JLF, Bernholc, PRB 2000]

• Mixed precision
  – Electronic wave functions are represented in single precision
  – Accumulation done in double precision for all dot products
  – [JLF et al., SC16 Proceedings]

• Nonorthogonal formulation

\[ E_{KS} = \sum_{i,j=1}^{N} \left( S^{-1} \right)_{ij} \int_{\Omega} \phi_i(r) \Delta \phi_j(r) + F[\rho] + \sum_{i,j=1}^{N} \left( S^{-1} \right)_{ij} \int_{\Omega} \phi_i(r) \left( V_{\text{ext}} \phi_j \right)(r) \]

\[ \rho(r) = \sum_{i,j=1}^{N} \left( S^{-1} \right)_{ij} \phi_i(r) \phi_j(r) \]
Repetitive solve at consecutive MD steps

- Molecular dynamics (MD) of liquid water
- 64 molecules with periodic boundary conditions
- Convergence for 5 MD steps
- N=256 (no unoccupied states)
Find sparsity in solution to reduce computational complexity

- DFT solution as a set of nonorthogonal localized functions (auxiliary basis set) spanning same subspace as exact solution

Single particle Density Matrix:
Off-diagonal elements decay
Exponentially away from diagonal

\[ X = C^{-1} F C^{-T} \]

\[ \Phi = \Psi \cdot C \]

\[ P = \Phi X \Phi^T \]
Sparsity in solution corresponds to physical locality

- We prescribe sparsity based on physical distances
We make use of physical locality in parallel strategy

- Parallel domain decomposition
- Subdomains
  - $16 \times 16 \times 32$ (close to strong scaling limit)
- Prescribe sparsity (spatial localization of solution) \textit{a priori}
- Direct minimization of DFT energy functional with localization constraints
Controllable accuracy

- Error in relevant physical quantities (forces acting on atoms) decays exponentially with localization radius.

Localization regions of size \(~9\) Bohr (contains \(~50\) atoms)
How about the occupation/single particle density matrix?

- For $N \sim 2000$, ScaLAPACK PDSYEV
  - $O(N^3)$, but small compared to everything else
  - [JLF, Bernholc, PRB 2000]

- For larger $N$, and large number of MPI tasks, becomes bottleneck
  - Setting up matrices is actually bottleneck!

- Use sparsity of DM
  - Sparse linear algebra in parallel is hard!

Matrix divide & conquer algorithm:
“Global” matrix made of blocks computed by “local” solves
Strategy for insulators, with only fully occupied states, case $X=S^{-1}$

- Only need elements “close” to diagonal
- Off-diagonal elements decay exponentially [Benzi et al.]
- Accumulate on each MPI task principal submatrices of $S$ corresponding to “closest” elements
  - Solve for $S_k$ with ILU0-preconditioned GMRES
  - Compute subset of columns of $S^{-1}$ on each processor

$$P = \Phi S^{-1} \Phi^T$$

$$S_{ij} = \phi_i(r)^T \phi_j(r)$$

$$T S \Phi \Phi^T = -1$$

$$r S_j T_i \phi \phi^T = (\tilde{S}^{-1})_k$$
Data communication algorithm for matrix elements (applied before and after solve)
Send data to left neighbor, recv. from right neighbor and merge
Data communication algorithm: repeat with received data
Data communication algorithm:
Repeat in left-right direction

<p>| | | | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

[Diagram showing data communication algorithm with arrows indicating left-right direction]
Data communication algorithm:
Repeat in Y (and Z-directions) using accumulated data
Data communication algorithm: 
Repeat in Y (and Z-directions)
Data communication algorithm:
Accumulated data
Merge received data with local CSR data

- Consider row j of local data (with global column indices):

PE $i+1$:

| 0 | 3 | 8 | 5 | 16 | 2 |

PE $i$:

| 2 | 5 | 8 | 11 | 0 | 3 | 16 |

Overlap with communication
Controllable accuracy

- Error in relevant physical quantities (forces acting on atoms) decays exponentially with matrix cutoff radius
- [Osei-Kuffor, JLF, PRL 2014]

Principal submatrix of size \( \sim 4000 \times 4000 \)
An $O(N)$ scalable implementation: MGmol code

- $O(N)$ operations for $N$ electrons
- Parallel domain decomposition — Each processor needs to communicate only with processors within a limited radius
  - Localized electronic orbitals
  - Local solver to compute selected elements of $S^{-1}$
- The only global coupling is through a Coulomb interaction term
  - Poisson problem solved with Multigrid-preconditioned CG
- Open source
  - https://github.com/llnl/mgmol
Scalability, time-to-solution $O(N/p)$

- Weak scaling on the full Sequoia machine
  - IBM/BGQ
  - 1 MPI task/core, 4 threads/MPI task
  - No. Processors proportional to problem size $\rightarrow$ Constant time-to-solution

- Liquid water
- 1 MD step in 1.5 minutes

[JLF et al., SC16 Proceedings]
Full Sequoia run: Liquid water with 1,179,648 atoms and 1,572,864 MPI tasks

Actual system size computed
Excellent agreement with standard Plane Waves benchmark

• Validation for dynamic properties
  – Pair-correlation function

• Comparison with $O(N^3)$ (Plane-Waves) result for relatively “small” problem
  – 1536 atoms
Divide & Conquer for matrices

• Solving principal submatrix problems in parallel
  – Use values “close to center” combined with others computed by other parallel tasks

• Above
  – computing inverse of Gram matrix

• Generalization: compute single particle Density Matrix in basis of localized orbitals
Density matrix computation

- SP2 algorithm applied to principal submatrix
DM solver in practice

- For each MPI task
  - Build sparse principal submatrices H and S matrices from elements computed by “nearest” other MPI tasks
  - Convert sparse matrices to dense matrices
  - Solve for DM
    - using SP2 (~15 iterations)/LAPACK dsyev
  - Distribute “local” DM columns to “nearest” other MPI tasks
Accuracy Results

- $\text{H}2\text{O}_{512}$
- 1 unoccupied state/molecule
- Localized orbitals with $R=10$ Bohr

<table>
<thead>
<tr>
<th>Radius (Bohr)</th>
<th>Principal sub-matrix size</th>
<th>error</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inf.</td>
<td>2560</td>
<td>0.</td>
</tr>
<tr>
<td>20.</td>
<td>2400</td>
<td>$2.9 \times 10^{-4}$</td>
</tr>
<tr>
<td>15</td>
<td>1566</td>
<td>$3.8 \times 10^{-4}$</td>
</tr>
</tbody>
</table>
Using a third party library for DM solver?

- DFT codes typically do not rely on many third party library beside BLAS/LAPACK/ScaLAPACK

- Is it going to change with new architectures, in particular nodes with GPU accelerators?
  - Large effort needed to port codes
  - Harder to get performance

- Library of DM solvers on the node (SP2,...)?
  - The Basic Matrix Library (BML) for Quantum Chemistry is an attempt in that direction
The basic matrix library (BML) is a collection of various matrix data formats (in dense and sparse) and their associated algorithms for basic matrix operations

Application programming interfaces (API) available for both C and FORTRAN

Current status of this library allows us to use two different formats for representing matrix data: dense, sparse (ELLPACK, ELLSORT)

In development

- Sparse CSR format
- Dense matrix operations using MAGMA (available soon)

A Matrix-matrix multiplication takes 3 ms for N=4000 on NVIDIA GPU P100
Acknowledgements

• Collaborators
  – Daniel Osei-Kuffuor, Lawrence Livermore National Laboratory
  – Christian Negre, Jamaludin Mohd-Yusof, and Susan Mniszewski, Los Alamos National Laboratory

• This research was supported by the Exascale Computing Project (17-SC-20-SC), a joint project of the U.S. Department of Energy’s Office of Science and National Nuclear Security Administration, responsible for delivering a capable exascale ecosystem, including software, applications, and hardware technology, to support the nation’s exascale computing imperative.