Finite difference DFT solver: Direct functional minimization with eigensolver in projected subspace

Jean-Luc Fattebert

Computational Sciences & Engineering Division

ational Laboratory

ORNL is managed by UT-Battelle for the US Department of Energy

- Direct solver for Kohn-Sham equations discretized by finite differences
- Scalable O(N) solver
- Towards GPU
 - BML library

Find invariant subspace solution of DFT equations for large numerical basis set

DFT solution as a set of N eigenvectors of length M

ational Labor

Direct solver (vs. SCF)

- Minimize energy functional of fundamental variables
 - $-\Psi, f_1, \dots, f_N$ (wave functions + occupations)
 - Other quantities are derived quantities (elec. density, potential)
- Compute gradient of nonlinear Kohn-Sham energy functional
 - $\nabla E_{KS} = 2[H\Psi \Psi(\Psi^T H\Psi)]$
- Repeat until convergence
 - Update wave functions
 - Block Preconditioned steepest-descent with Anderson acceleration
 - Block Nonlinear CG (Polak-Ribiere)
 - Update occupation numbers
 - Diagonalize H in projected subspace spanned by wave functions
 - Possibly mix newly computed DM with previous DM
 - Inner optimization loop [Marzari & Vanderbilt, PRL, 1997] for metals

Our Finite difference implementation

- Multigrid preconditioner applied to steepest descent directions
 - Similar to diagonal "frequency" preconditioner used in Plane-Waves codes
 - [JLF, Bernholc, PRB 2000]
- Mixed precision
 - Electronic wave functions are represented in single precision
 - Accumulation done in double precision for all dot products
 - [JLF et al., SC16 Proceedings]
- Nonorthogonal formulation

i, j=1

$$E_{KS} = \sum_{i,j=1}^{N} \left(S^{-1} \right)_{ij} \int_{\Omega} \phi_i(r) \Delta \phi_j(r) + F[\rho] + \sum_{i,j=1}^{N} \left(S^{-1} \right)_{ij} \int_{\Omega} \phi_i(r) \left(V_{ext} \phi_j \right)(r)$$

$$\rho(r) = \sum_{i,j=1}^{N} \left(S^{-1} \right)_{ij} \phi_i(r) \phi_j(r)$$

Repetitive solve at consecutive MD steps

- Molecular dynamics (MD) of liquid water
- 64 molecules with periodic boundary conditions
- Convergence for 5 MD steps
- N=256 (no unoccupied states)

Find sparsity in solution to reduce computational complexity

 DFT solution as a set of nonorthogonal localized functions (auxiliary basis set) spanning same subspace as exact solution

ational Labor

7

Sparsity in solution corresponds to physical locality

We prescribe sparsity based on physical distances

We make use of physical locality in parallel strategy

- Parallel domain decomposition
- Subdomains
 - 16×16×32 (close to strong scaling limit)
- Prescribe sparsity (spatial localization of solution) a priori
- Direct minimization of DFT energy functional with localization constraints

Controllable accuracy

 Error in relevant physical quantities (forces acting on atoms) decays exponentially with localization radius

How about the occupation/single particle density matrix?

- For N~2000, ScaLAPACK PDSYEV
 - O(N³), but small compared to everything else
 - [JLF, Bernholc, PRB 2000]
- For larger N, and large number of MPI tasks, becomes bottleneck
 - Setting up matrices is actually bottleneck!
- Use sparsity of DM
 - Sparse linear algebra in parallel is hard!

Matrix divide & conquer algorithm: "Global" matrix made of blocks computed by "local" solves

Strategy for insulators, with only fully occupied states, case X=S⁻¹

 $P = \Phi S^{-1} \Phi^T$

 $S_{ii} = \vec{\phi}_i(r)^T \vec{\phi}_i(r)$

- Only need elements "close" to diagonal
- Off-diagonal elements decay exponentially [Benzi et al.]
- Accumulate on each MPI task principal submatrices of S corresponding to "closest" elements
 - Solve for S_k with ILU0-preconditioned GMRES
 - Compute subset of columns of S⁻¹ on each processor

Data communication algorithm for matrix elements (applied before and after solve)

Send data to left neighbor, recv. from right neighbor and merge

Data communication algorithm: repeat with received data

Data communication algorithm: Repeat in left-right direction

Data communication algorithm: Repeat in Y (and Z-directions) using accumulated data

	● ↑		
	ľ		

Data communication algorithm: Repeat in Y (and Z-directions)

Data communication algorithm: Accumulated data

Merge received data with local CSR data

Consider row j of local data (with global column indices):

Overlap with communication

Controllable accuracy

- Error in relevant physical quantities (forces acting on atoms) decays exponentially with matrix cutoff radius
- [Osei-Kuffor, JLF, PRL 2014]

An O(N) scalable implementation: MGmol code

- O(N) operations for N electrons
- Parallel domain decomposition Each processor needs to communicate only with processors within a limited radius
 - Localized electronic orbitals
 - Local solver to compute selected elements of S⁻¹
- The only global coupling is through a Coulomb interaction term
 - Poisson problem solved with Multigrid-preconditioned CG
- Open source
 - https://github.com/llnl/mgmol

Scalability, time-to-solution O(N/p)

- Weak scaling on the full Sequoia machine
 - IBM/BGQ
 - 1 MPI task/core, 4 threads/MPI task
 - No. Processors proportional to problem size → Constant time-tosolution
- Liquid water
- 1 MD step in 1.5 minutes

Full Sequoia run: Liquid water with 1,179,648 atoms and 1,572,864 MPI tasks

Excellent agreement with standard Plane Waves benchmark

- Validation for dynamic properties
 - Pair-correlation function
- Comparison with O(N³) (Plane-Waves) result for relatively "small" problem
 - 1536 atoms

Divide & Conquer for matrices

- Solving principal submatrix problems in parallel
 - Use values "close to center" combined with others computed by other parallel tasks
- Above
 - computing inverse of Gram matrix
- Generalization: compute single particle Density Matrix in basis of localized orbitals
 - Nonorthogonal purification based on SP2 [Niklasson, Weber, Challacombe, J. Chem. Phys. 2005]

Density matrix computation

SP2 algorithm applied to principal submatrix

DM solver in practice

For each MPI task

- Build sparse principal submatrices H and S matrices from elements computed by "nearest" other MPI tasks
- Convert sparse matrices to dense matrices
- Solve for DM
 - using SP2 (~15 iterations)/LAPACK dsyev
- Distribute "local" DM columns to "nearest" other MPI tasks

Communications

Accuracy Results

- H2O₅₁₂
- 1 unoccupied state/molecule
- Localized orbitals with R=10 Bohr

Radius (Bohr)	Principal sub- matrix size	error
Inf.	2560	0.
20.	2400	2.9x10 ⁻⁴
15	1566	3.8x10 ⁻⁴

Using a third party library for DM solver?

- DFT codes typically do not rely on many third party library beside BLAS/LAPACK/ScaLAPACK
- Is it going to change with new architectures, in particular nodes with GPU accelerators?
 - Large effort needed to port codes
 - Harder to get performance
- Library of DM solvers on the node (SP2,...)?
 - The Basic Matrix Library (BML) for Quantum Chemistry is an attempt in that direction

BML (https://github.com/lanl/bml)

- The basic matrix library (BML) is a collection of various matrix data formats (in dense and sparse) and their associated algorithms for basic matrix operations
- Application programming interfaces (API) available for both C and FORTRAN
- Current status of this library allows us to use two different formats for representing matrix data: dense, sparse (ELLPACK, ELLSORT)
- In development
 - Sparse CSR format
 - Dense matrix operations using MAGMA (available soon)
 - A Matrix-matrix multiplication takes 3 ms for N=4000 on NVIDIA GPU P100

Acknowledgements

- Collaborators
 - Daniel Osei-Kuffuor, Lawrence Livermore National Laboratory
 - Christian Negre, Jamaludin Mohd-Yusof, and Susan Mniszewski, Los Alamos National Laboratory
- This research was supported by the Exascale Computing Project (17-SC-20-SC), a joint project of the U.S.
 Department of Energy's Office of Science and National Nuclear Security Administration, responsible for delivering a capable exascale ecosystem, including software, applications, and hardware technology, to support the nation's exascale computing imperative.

