
ORNL is managed by UT-Battelle

for the US Department of Energy

Finite difference DFT
solver: Direct functional
minimization with
eigensolver in projected
subspace

Jean-Luc Fattebert

Computational Sciences &
Engineering Division

2

Outline

• Direct solver for Kohn-Sham equations discretized by finite
differences

• Scalable O(N) solver

• Towards GPU

– BML library

3

Find invariant subspace solution of DFT
equations for large numerical basis set

▪ DFT solution as a set of N eigenvectors of length M

TFP =()N 1= 10  if

Number of rows and columns

grows with problem size!

V
a
lu

e
s
 a

t
m

e
s
h
 p

o
in

ts

Function index

E = 𝑇𝑟 𝑃𝐻 + 𝑓 𝜌 = 𝑇𝑟 (Ψ𝑇𝐻Ψ)𝐹 + f(ρ)

4

Direct solver (vs. SCF)

• Minimize energy functional of fundamental variables

– Ψ, 𝑓1,… ,𝑓𝑁 (wave functions + occupations)

– Other quantities are derived quantities (elec. density, potential)

• Compute gradient of nonlinear Kohn-Sham energy functional

– ∇𝐸𝐾𝑆 = 2[𝐻Ψ−Ψ(Ψ𝑇𝐻Ψ)]

• Repeat until convergence

– Update wave functions

• Block Preconditioned steepest-descent with Anderson acceleration

• Block Nonlinear CG (Polak-Ribiere)

– Update occupation numbers

• Diagonalize H in projected subspace spanned by wave functions

• Possibly mix newly computed DM with previous DM

– Inner optimization loop [Marzari & Vanderbilt, PRL, 1997] for metals

5

Our Finite difference implementation

• Multigrid preconditioner applied to steepest descent
directions

– Similar to diagonal “frequency” preconditioner used in Plane-Waves
codes

– [JLF, Bernholc, PRB 2000]

• Mixed precision

– Electronic wave functions are represented in single precision

– Accumulation done in double precision for all dot products

– [JLF et al., SC16 Proceedings]

• Nonorthogonal formulation

() () ()   () ()()()

() () ()rrSr

rVrSFrrSE

ji

N

ji
ij

jext

N

ji
iijj

N

ji
iijKS







  

=

−

= 

−

= 

−

=

++=

1,

1

1,

1

1,

1

)(

6

Repetitive solve at consecutive MD steps

• Molecular dynamics (MD) of liquid water

• 64 molecules with periodic boundary conditions

• Convergence for 5 MD steps

• N=256 (no unoccupied states)

tolerance

7

Find sparsity in solution to reduce
computational complexity

▪ DFT solution as a set of nonorthogonal localized functions
(auxiliary basis set) spanning same subspace as exact
solution

V
a
lu

e
s
 a

t
m

e
s
h
 p

o
in

ts

Function index

TXP =

C=

TFCCX −−= 1

Single particle Density Matrix:

Off-diagonal elements decay

Exponentially away from diagonal

8

Sparsity in solution corresponds to physical
locality

▪ We prescribe sparsity based on physical distances

9

We make use of physical locality in parallel
strategy

• Parallel domain
decomposition

• Subdomains

– 161632 (close to strong
scaling limit)

• Prescribe sparsity (spatial
localization of solution) a
priori

• Direct minimization of DFT
energy functional with
localization constraints

PE0 PE1 PE2 …

10

Controllable accuracy

• Error in relevant physical quantities
(forces acting on atoms) decays
exponentially with localization
radius

Localization regions of size ~9 Bohr

(contains ~50 atoms)

11

How about the occupation/single particle
density matrix?

• For N~2000, ScaLAPACK PDSYEV

– O(N3), but small compared to everything else

– [JLF, Bernholc, PRB 2000]

• For larger N, and large number of MPI tasks, becomes
bottleneck

– Setting up matrices is actually bottleneck!

• Use sparsity of DM

– Sparse linear algebra in parallel is hard!

Matrix divide & conquer algorithm:
“Global” matrix made of blocks computed by “local” solves

12

Strategy for insulators, with only fully
occupied states, case X=S-1

• Only need elements “close” to diagonal

• Off-diagonal elements decay exponentially [Benzi et al.]

• Accumulate on each MPI task principal submatrices of S corresponding
to “closest” elements

– Solve for Sk with ILU0-preconditioned GMRES

– Compute subset of columns of S-1 on each processor

TSP = −1

() ()rrS j

T

iij 


=

13

Data communication algorithm for matrix elements
(applied before and after solve)

14

Send data to left neighbor, recv. from right neighbor
and merge

15

Data communication algorithm:
repeat with received data

16

Data communication algorithm:
Repeat in left-right direction

17

Data communication algorithm:
Repeat in Y (and Z-directions) using accumulated data

18

Data communication algorithm:
Repeat in Y (and Z-directions)

19

Data communication algorithm:
Accumulated data

20

Merge received data with local CSR data

• Consider row j of local data (with global column indices):

PE i+1:

PE i:

Overlap with communication

0 3 8 5 16 2

2 5 8 11 0 3 16

add insert

21

Controllable accuracy

• Error in relevant physical quantities
(forces acting on atoms) decays
exponentially with matrix cutoff
radius

• [Osei-Kuffor, JLF, PRL 2014]

Principal submatrix of size 40004000

22

An O(N) scalable implementation: MGmol
code

• O(N) operations for N electrons

• Parallel domain decomposition — Each processor
needs to communicate only with processors within
a limited radius

– Localized electronic orbitals

– Local solver to compute selected elements of S-1

• The only global coupling is through a Coulomb
interaction term

– Poisson problem solved with Multigrid-preconditioned
CG

• Open source

– https://github.com/llnl/mgmol

23

Scalability, time-to-solution O(N/p)

• Weak scaling on the full Sequoia machine

– IBM/BGQ

– 1 MPI task/core, 4 threads/MPI task

– No. Processors proportional to problem size → Constant time-to-
solution

• Liquid water

• 1 MD step in 1.5 minutes

[JLF et al., SC16 Proceedings]

24

Full Sequoia run: Liquid water with
1,179,648 atoms and 1,572,864 MPI tasks

Actual system size

computed

25

Excellent agreement with standard Plane
Waves benchmark

• Validation for dynamic
properties

– Pair-correlation function

• Comparison with O(N3)
(Plane-Waves) result for
relatively “small”
problem

– 1536 atoms

26

Divide & Conquer for matrices

• Solving principal submatrix problems in parallel

– Use values “close to center” combined with others computed by other
parallel tasks

• Above

– computing inverse of Gram matrix

• Generalization: compute single particle Density Matrix in
basis of localized orbitals

– Nonorthogonal purification based on SP2 [Niklasson, Weber,
Challacombe, J. Chem. Phys. 2005]

27

Density matrix computation

• SP2 algorithm applied to principal submatrix

SP2H DM

28

DM solver in practice

• For each MPI task

– Build sparse principal submatrices H and S matrices from elements
computed by “nearest” other MPI tasks

– Convert sparse matrices to dense matrices

– Solve for DM

• using SP2 (~15 iterations)/LAPACK dsyev

– Distribute “local” DM columns to “nearest” other MPI tasks

Communications

29

Accuracy Results

• H2O512

• 1 unoccupied state/molecule

• Localized orbitals with R=10 Bohr

Radius (Bohr) Principal sub-

matrix size

error

Inf. 2560 0.

20. 2400 2.9x10-4

15 1566 3.8x10-4

30

Using a third party library for DM solver?

• DFT codes typically do not rely on many third party library
beside BLAS/LAPACK/ScaLAPACK

• Is it going to change with new architectures, in particular
nodes with GPU accelerators?

– Large effort needed to port codes

– Harder to get performance

• Library of DM solvers on the node (SP2,…)?

– The Basic Matrix Library (BML) for Quantum Chemistry is an attempt
in that direction

31

BML (https://github.com/lanl/bml)

• The basic matrix library (BML) is a collection of various
matrix data formats (in dense and sparse) and their
associated algorithms for basic matrix operations

• Application programming interfaces (API) available for both
C and FORTRAN

• Current status of this library allows us to use two different
formats for representing matrix data: dense, sparse
(ELLPACK, ELLSORT)

• In development

– Sparse CSR format

– Dense matrix operations using MAGMA (available soon)

• A Matrix-matrix multiplication takes 3 ms for N=4000 on NVIDIA GPU
P100

32

Acknowledgements

• Collaborators

– Daniel Osei-Kuffuor, Lawrence Livermore National Laboratory

– Christian Negre, Jamaludin Mohd-Yusof, and Susan Mniszewski, Los
Alamos National Laboratory

• This research was supported by the Exascale Computing
Project (17-SC-20-SC), a joint project of the U.S.
Department of Energy’s Office of Science and National
Nuclear Security Administration, responsible for delivering a
capable exascale ecosystem, including software,
applications, and hardware technology, to support the
nation’s exascale computing imperative.

