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      Method                                        Eform. (eV) Time
      Orthogonal TB                               3.2               1
      Self-Consistent Orthogonal TB     3.2             13
      Non-orthogonal TB                       3.1                2  (~DFTB)
      SC non-orthogonal TB                  3.4              19  (~SCC-DFTB)
      3 centre non-orthogonal TB          4.3              72
      3 centre SC non-orthogonal TB    4.4              87
      LCAO LDA DFT                          3.8              44
      SC LCAO LDA DFT                    4.1            110

Si vacancy formation, 64 atoms periodic Γ-point minimal basis
A. P. Horsfield and A. M. Bratkovsk, J. Phys. Cond. Mat. 12 R1–R24 (2000).

Motivation via computational cost 
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DFTB

Semi-empirical DFTB modelling (DFT-lite descended 
from the Harris functional)

•  Non-orthogonal tight-binding minimal basis (usually)
•  Approximate expansion of Kohn-Sham around a reference

 density
•  Higher order terms give charge transfer and spin 

contributions
   – Behaves like (S)GGA/LDA
•  Parameterised integrals/repulsives but no integration after 

that    (Open parameters : http://www.dftb.org ) 
•  Standard DFT-like properties (Janak's theorem works),

 vibrational modes/intensities/Raman/...
•  Time dependent and transport extensions (following DFT)

J. Phys. Chem. A 111, issue 26 (2007)
pssb 249 issue 2 (2012)
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Sum of neutral confned atomic densities (Confnment 
dictated by physical environment)

Ebs[n0] and E2nd[n0,δn2] calculated explicitely 

(approximations: yes, adjustable parameters: no)

Erep[n0] ftted to ab initio calculations 
(corrects energyerrors due to approximations)

Superposition of pairwise interactions

Deviation from ab initio calculation 
tabulated as function of distance in 
advance
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Historically needed a lot of expertise
Choosing right fit system(s)

Stretching/compressing dimers usually not enough

Choosing test systems

Wide spectrum of systems and properties reasonable

Several diatomic repulsives must be co-optimised at the same time

rep ab initio bs 2( ( ) [) )](E R R EE E R

    Tabulating difference
between ab initio and DFTB 
without repulsives as function 
of distance

Automatic (black box) fitting difficult, semi-automatic fitting 
currently possible:

(e.g. biological systems, solids, hybrid systems)

C – C

C – H

H – H

Repulsives
needed:

Repulsive parameterization

https://bitbucket.org/stanmarkov/skopt  https://bitbucket.org/solccp/adpt_core

https://bitbucket.org/stanmarkov/skopt
https://bitbucket.org/solccp/adpt_core
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In the late 1990's several groups all started considering how to account 
more realistically for charge transfer effects in tight binding.

The DFTB approach is to use Mulliken charges to model of the 
electrostatics present in the system. This then adds terms to the total 
energy and potential that depend on fluctuations from neutrality of the 
local charges.

Elstner, Porezag, Jungnickel, Elsner, Haugk, Frauenheim, Suhai and 
Seifert, Phys. Rev. B 58 7260 (1998).

DFTB SCC contribution
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With respect to G2 set:
mean ave. dev.: 4.3 kcal/mole
Krueger, et al., J. Chem. Phys. 122 (2005) 114110.

SCC-DFTB (DFTB2) – accuracy
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Typical mean absolute deviation (MAD) of 3–5 kcal/mol∼

X. Lu, M. Gaus, M. Elstner, Q. Cui, J. Phys. Chem B 2015, 119, 1062−1082.

DFTB3 – accuracy
Expand the DFT energy to 3rd order in charge fluctuations

Small molecule 
test set

Paper includes 
peptides and 
other larger 
systems at 
DFTB3 level
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Köhler et al. Chem. Phys 309 23 (2005)

Spin
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Melix, P., Oliveira, A.F., Rüger, R. et al. Theor Chem Acc (2016) 135: 232. 

Spin – accuracy

GMTKN30 test set

3ob set technically 
intended for 
DFTB3 level model
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Graphene

Field length Atoms

39 T 0.8 μm 8000

19.5 T 1.7 μm 16000

15.6 T 2.1 μm 20000

Calculations 
performed on 
SUPERMUC in 
Bavaria via 
PRACE scheme, 
ScaLAPACK 
D&C, QR solvers
96 nodes x16 
cores; 92% 
strong scaling

Bulk states of this 
system with DFTB+
– Landau levels

Problem: supercell 
has a  minimum of 1 
flux quantum of B 
field threading 
through. The bigger 
the cell the smaller 
the applied field can 
be
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linear scaling DFTB technologies – either 
In the literature, 'current' or legacy  DFTB codes:

● Yang's divide and conquer (at least x3 versions)
● Galli functional
● Fermi operator expansion (at least x2 versions)
● Time dependent DFTB from [H,SP]
● Green's function solutions (NEGF for 1D)

Quadratic scaling –
● Car-Parinello + sparsity (Heine)
● SIPPS (Sternberg)
● PEXSI (Bremen Student project)

Previous low scaling DFTB implementations
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Nishizawa et al. Journal of Computational Chemistry 
2016, 37, 1983–1992

Current size limits: DC-DFTB-K code

Liquid water simulation 
using 
Divide and conquer to 
build the density matrix, 
and a (very) large 
supercomputer

– wide HOMO-LUMO
– disordered
– localised density
   matrix
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Internally designed to use a sparse representation for as much as 
possible (well, easy…).

DFTB+

Solve H - εS
to get density matrix

Calculate properties from
 sparse density matrix

Calculate sparse H & S
from geometry

and charges of atoms
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Internally designed to use a sparse representation for as much as 
possible (well, easy…).
Only at two point in its calculation are there dense calculations to solve 
the ground state hamiltonian

DFTB+

Solve H - εS
to get density matrix

Conventional
eigensolution

Calculate properties from
 sparse density matrix

Calculate sparse H & S
from geometry

and charges of atoms
electrostatics
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Internal sparse data structure

Compressed block lower triangle format

B. Aradi, B. Hourahine, and Th. Frauenheim.
DFTB+, a sparse matrix-based implementation of the DFTB method, 
J. Phys. Chem. A, 111 5678 (2007)

As with CSR/CSC for direct GEMV operations;  
Block compressed operations directly for band 
energy, Mulliken populations, forces, stress, ...
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Internal sparse data structure

Compressed block lower triangle format – includes boundary conditions 
in format (non central cell atoms in lower triangle) so not quite Harwell

B. Aradi, B. Hourahine, and Th. Frauenheim.
DFTB+, a sparse matrix-based implementation of the DFTB method, 
J. Phys. Chem. A, 111 5678 (2007)

As with CSR/CSC for direct GEMV operations;  
Block compressed operations directly for band 
energy, Mulliken populations, forces, stress, ...
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DFTB+ as of today

http://www.dftbplus.org  + http://www.dftb.org
● 17.1 onwards LGPL 3 licence; 18.1 is dual openMP and MPI 

parallel (and hybrid); 18.2 bugfix release

● LAPACK / ScaLAPACK eigensolvers

● DFTB 1, 2 and 3 models (+ spin)

● LDA+U, spin orbit, Casida exited state (molecules, Γ point partly)

● Various MD and geometry drivers (XL-BOMD, L-BFGS, …)

● Socket interface to drive with other codes (path-integral MD and 
REMD from I-Pi code https://github.com/i-pi/i-pi, ...) 

● Various software engineering: FYPP preprocessor used – Fortran 
meta-programming; Doxygen / ford literate; regression testing; ... 
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DFTB+ Parallel performance
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ScaLAPACK (Pre-ELSI)

 

SuperMUC, Munich – Intel Xeon Sandy Bridge-EP Infiniband interconnect

Γ point SCC 
7 iterations
+ forces 



  

MolSSI/ELSI

ScaLAPACK (MRRR) – Jan ‘18 old hardware
S

pe
ed

-u
p

N core

Si
2048

C
2048

 supercell, Γ point, 4 self consistent cycles + forces / stresses

(Dual Intel Xeon X5650 2.66 GHz)
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● Ifort 17.1 / MKL / ELSI
● Dell C6100 servers (2 

CPU/node)
● Dual Intel Xeon X5650 2.66 GHz 

CPU’s (6 cores each)
● 48 GB RAM
● 4xQDR Infiniband Interconnect
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Si
2048

C
2048

 supercell, Γ point, 4 self consistent cycles + forces / stresses

(Dual Intel Xeon X5650 2.66 GHz)

N core
1 10 100

0

5

10

15

20

25

30

35

40

45

setup
SCC
Eigen
DM
EDM
Force
Stress
Total

S
pe

ed
 u

p
ELSI (ELPA2) – Jan’18 old hardware
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Si
864

C
864

 supercell, Γ point, 4 self consistent cycles + forces / stresses

(Dual Intel Xeon X5650 2.66 GHz)
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SiC cubic cell, 4 SCC cycles + forces, 4 processors

Recent ELSI (July ‘18)

Xeon E5-2630
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SiC cubic cell, 4 SCC cycles + forces, 4 processors

Just the eigensolvers...

Xeon E5-2630
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SiC cubic cell, 4 SCC cycles + forces, 8 processors

A bit larger systems

Xeon E5-2630
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SiC cubic cell, 4 SCC cycles + forces, 16 processors

System size scaling

Xeon E5-2630
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Speed-up and parallel efficiency

Si
2048

C
2048

 cubic cell, 4 SCC cycles + forces PEXSI

~94% parallel 
– solver is  better than surrounding code but 
dominates total time
– not a surprise 
● PEXSI is nested parallel over the poles 

(x20), then the matrix inversion for each pole
● solving inversion on 10 cores

> 45% efficient in this case up to 400 cores
Again the solver dominates and is better 
scaling than the rest of the code
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2 x Intel Xeon Gold 6138 20 core 2.0GHz CPU / Node (~ Skylake)
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2D case – periodic graphene with PEXSI

2 x Intel Xeon Gold 6138 20 core 2.0GHz CPU / Node (~ Skylake)
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2D case – periodic graphene with PEXSI

2 x Intel Xeon Gold 6138 20 core 2.0GHz CPU / Node (Broadwell)

Fill-in worse than expected – hoping for O(N1.5), got O(N2)
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1D case – 10,10 nanotube with PEXSI
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CNT on 40 processors, 20 proc/pole
non-SCC energy + forces
8 proc./pole
Ifort 18.2 / MKL / ELSI
Skylake
192 GB RAM / node 
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1/r matrix
Power (1/r matrix)
H->DM
Power (H->DM)
Power (H->DM)
Total
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CNT on 40 processors, 20 proc/pole
non-SCC energy + forces
8 proc./pole
Ifort 18.2 / MKL / ELSI
Skylake
192 GB RAM / node 

Geometry and neighbour set-up
● electrostatics (if used) are similar 

costs (depends on periodic / 
molecular boundary)

1D case – 10,10 nanotube with PEXSI
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Interactions with the ELSI team

Definitely recommend working with ELSI
● Victor’s Advice on DFTB+↔CSC format

– Contributed DFTB+↔Siesta CSC code < 1 week

– Also answered a lot of my stupid API questions
● Complex Hamitonians with PEXSI

– Turns out transpose of DM was being returned
– Lin fixed this within ~3 days

● ...
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The Volker and the ELSI team (special thanks to Victor Yu, Lin Lin and his 
group)

Thomas Frauenheim and the BCCMS Bremen group (Bálint Aradi, Christof 
Köhler,…)
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