GPU-Accelerated Real Space Electronic Structure Theory on HPC Resources

William P. Huhn¹, Björn Lange¹, Victor Yu¹, Seyong Lee², Mina Yoon³, Volker Blum¹ I. Department of Mechanical Engineering and Materials Science, Duke University 2. Computer Science and Math Division, Oak Ridge National Laboratory 3. Center for Nanophase Materials Sciences, Oak Ridge National Laboratory

> MoISSI Workshop/ELSI Conference 2018 August 17, 2018, 2:40 - 3:10 EST

Introduction

Rank	System	Cores	(TFlop/s)	(TFlop/s)	(kW)
1	Summit - IBM Power System AC922, IBM POWER9 22C 3.07GHz, NVIDIA Volta GV100, Dual-rail Mellanox EDR Infiniband , IBM DOE/SC/Oak Ridge National Laboratory United States	2,282,544	122,300.0	187,659.3	8,806
2	Sunway TaihuLight - Sunway MPP, Sunway SW26010 260C 1.45GHz, Sunway , NRCPC National Supercomputing Center in Wuxi China	10,649,600	93,014.6	125,435.9	15,371
3	Sierra - IBM Power System S922LC, IBM POWER9 22C 3.1GHz, NVIDIA Volta GV100, Dual-rail Mellanox EDR Infiniband , IBM DOE/NNSA/LLNL United States	1,572,480	71,610.0	119,193.6	
4	Tianhe-2A - TH-IVB-FEP Cluster, Intel Xeon E5-2692v2 12C 2.2GHz, TH Express-2, Matrix-2000 , NUDT National Super Computer Center in Guangzhou China	4,981,760	61,444.5	100,678.7	18,482
5	Al Bridging Cloud Infrastructure (ABCI) - PRIMERGY CX2550 M4, Xeon Gold 6148 20C 2.4GHz, NVIDIA Tesla V100 SXM2, Infiniband EDR , Fujitsu National Institute of Advanced Industrial Science and Technology (AIST) Japan	391,680	19,880.0	32,576.6	1,649
6	Piz Daint - Cray XC50, Xeon E5-2690v3 12C 2.6GHz, Aries interconnect, NVIDIA Tesla P100, Cray Inc. Swiss National Supercomputing Centre (CSCS) Switzerland	361,760	19,590.0	25,326.3	2,272

https://www.top500.org/list/2018/06/, accessed 25 June 2018

MoISSI/ELSI 2018

August 17, 2018, 2:40 pm EST

Introduction

Rank	System	Cores	(TFlop/s)	(TFlop/s)	(kW)
1	Summit - IBM Power System AC922, IBM POWER9 22C 3.07GHz, NVIDIA Volta GV100, Dual-rail Mellanox EDR Infiniband , IBM DOE/SC/Oak Ridge National Laboratory United States	2,282,544	122,300.0	187,659.3	8,806
2	Sunway TaihuLight - Sunway MPP, Sunway SW26010 260C 1.45GHz, Sunway , NRCPC National Supercomputing Center in Wuxi China	10,649,600	93,014.6	125,435.9	15,371
3	Sierra - IBM Power System S922LC, IBM POWER9 22C 3.1GHz, NVIDIA Volta GV100, Dual-rail Mellanox EDR Infiniband , IBM DOE/NNSA/LLNL United States	1,572,480	71,610.0	119,193.6	
4	Tianhe-2A - TH-IVB-FEP Cluster, Intel Xeon E5-2692v2 12C 2.2GHz, TH Express-2, Matrix-2000 , NUDT National Super Computer Center in Guangzhou China	4,981,760	61,444.5	100,678.7	18,482
5	Al Bridging Cloud Infrastructure (ABCI) - PRIMERGY CX2550 M4, Xeon Gold 6148 20C 2.4GHz, NVIDIA Tesla V100 SXM2, Infiniband EDR , Fujitsu National Institute of Advanced Industrial Science and Technology (AIST) Japan	391,680	19,880.0	32,576.6	1,649
6	Piz Daint - Cray XC50, Xeon E5-2690v3 12C 2.6GHz, Aries interconnect NVIDIA Tesla P100 Cray Inc. Swiss National Supercomputing Centre (CSCS) Switzerland	361,760	19,590.0	25,326.3	2,272

https://www.top500.org/list/2018/06/, accessed 25 June 2018

MoISSI/ELSI 2018

August 17, 2018, 2:40 pm EST

Supporting general-purpose GPU (GPGPU) acceleration is critical for running electronic structure theory on current leading HPC platforms!

Introduction

Supporting general-purpose GPU (GPGPU) acceleration is critical for running electronic structure theory on current leading HPC platforms!

Code targeted: FHI-aims

- All-Electron, Full-Potential KS-DFT
- Localized basis sets: Numeric atomcentered orbitals (NAOs)
- Developed by an active, globallydistributed academic community of 100+ developers

Introduction

Supporting general-purpose GPU (GPGPU) acceleration is critical for running electronic structure theory on current leading HPC platforms!

For (non-hybrid) KS-DFT using real-space operations, the rate-limiting steps are:

Integration of the Hamiltonian Matrix Elements

$$H_{mn} = \int \varphi_m^*(\boldsymbol{r}) \hat{h} \varphi_n(\boldsymbol{r}) d\boldsymbol{r}$$

Electron Density Calculation

$$\rho(\boldsymbol{r}) = \sum_{mn} \varphi_m^*(\boldsymbol{r}) D_{mn} \varphi_n(\boldsymbol{r})$$

Solution (or circumvention) of the KS-DFT Equation

$$[\hat{t} + \hat{v}_{ES} + \hat{v}_{XC}] \psi_m(\boldsymbol{r}) = \epsilon \psi_m(\boldsymbol{r})$$

For (non-hybrid) KS-DFT using real-space operations, the rate-limiting steps are:

Integration of the Hamiltonian Matrix Elements $H_{mn} = \int \varphi_m^*(\boldsymbol{r}) \hat{h} \varphi_n(\boldsymbol{r}) d\boldsymbol{r}$ Electron Density Calculation $\rho(\boldsymbol{r}) = \sum_{mn} \varphi_m^*(\boldsymbol{r}) D_{mn} \varphi_n(\boldsymbol{r})$ Small/Mid-Scale Calculations

Solution (or circumvention) of the KS-DFT Equation Calculations $\begin{bmatrix} \hat{t} + \hat{v}_{ES} + \hat{v}_{XC} \end{bmatrix} \psi_m(\mathbf{r}) = \epsilon \psi_m(\mathbf{r})$ For (non-hybrid) KS-DFT using real-space operations, the rate-limiting steps are:

Solution (or circumvention) of the KS-DFT Equation $\begin{bmatrix} \hat{t} + \hat{v}_{ES} + \hat{v}_{XC} \end{bmatrix} \psi_m(\mathbf{r}) = \epsilon \psi_m(\mathbf{r})$ Large-Scale
Calculations
Calculations
elsi-interchange.org

Numeric Atom-Centered Orbitals

$$\varphi_{nlm}(\boldsymbol{r}) = \frac{u_n(\boldsymbol{r})}{\boldsymbol{r}} Y_{lm}(\boldsymbol{r})$$

r (log scale)

- Integration points distributed on radial grids around atoms
- Basis elements localized in space give O(N) real-space operation
- Capture core region "wiggles"; naturally all-electron
- Pre-constructed "tiers" of basis elements suitable for DFT:

Basis Set	Н	С	Si
Minimum	ls	ls2s2p	ls2s2p3s3p
Tier I	+sp	+pds	+dpfs
Tier 2	+spsd	+fpsgd	+dgps
•••	•••	• • •	•••

Blum et al., Comp. Phys. Comm. 2009

Becke, J. Phys. Chem 1988; Delley, J.Phys. Chem. 1990; Havu, J Comp. Phys 2009

MoISSI/ELSI 2018

August 17, 2018, 2:40 pm EST

Becke, J. Phys. Chem 1988; Delley, J.Phys. Chem. 1990; Havu, J Comp. Phys 2009

August 17, 2018, 2:40 pm EST

Becke, J. Phys. Chem 1988; Delley, J.Phys. Chem. 1990; Havu, J Comp. Phys 2009

August 17, 2018, 2:40 pm EST

Becke, J. Phys. Chem 1988; Delley, J.Phys. Chem. 1990; Havu, J Comp. Phys 2009

August 17, 2018, 2:40 pm EST

<u>www.williamphuhn.com</u>

Becke, J. Phys. Chem 1988; Delley, J.Phys. Chem. 1990; Havu, J Comp. Phys 2009

August 17, 2018, 2:40 pm EST

<u>www.williamphuhn.com</u>

Becke, J. Phys. Chem 1988; Delley, J.Phys. Chem. 1990; Havu, J Comp. Phys 2009

MoISSI/ELSI 2018

August 17, 2018, 2:40 pm EST

As system size grows, number of batches grows linearly

Becke, J. Phys. Chem 1988; Delley, J.Phys. Chem. 1990; Havu, J Comp. Phys 2009

MoISSI/ELSI 2018

August 17, 2018, 2:40 pm EST

As system size grows, number of batches grows linearly

> Batches are embarrassingly parallel over tasks

Becke, J. Phys. Chem 1988; Delley, J.Phys. Chem. 1990; Havu, J Comp. Phys 2009

August 17, 2018, 2:40 pm EST

As system size grows, number of batches grows linearly

> Batches are embarrassingly parallel over tasks

Becke, J. Phys. Chem 1988; Delley, J.Phys. Chem. 1990; Havu, J Comp. Phys 2009

August 17, 2018, 2:40 pm EST

As system size grows, number of batches grows linearly

> Batches are embarrassingly parallel over tasks

Becke, J. Phys. Chem 1988; Delley, J.Phys. Chem. 1990; Havu, J Comp. Phys 2009

August 17, 2018, 2:40 pm EST

As system size grows, number of batches grows linearly

> Batches are embarrassingly parallel over tasks

Only basis elements touching a batch contribute to work done for batch

Becke, J. Phys. Chem 1988; Delley, J.Phys. Chem. 1990; Havu, J Comp. Phys 2009

MoISSI/ELSI 2018

August 17, 2018, 2:40 pm EST

As system size grows, number of batches grows linearly

> Batches are embarrassingly parallel over tasks

Only basis elements touching a batch contribute to work done for batch

Becke, J. Phys. Chem 1988; Delley, J.Phys. Chem. 1990; Havu, J Comp. Phys 2009

MoISSI/ELSI 2018

August 17, 2018, 2:40 pm EST

As system size grows, number of batches grows linearly

> Batches are embarrassingly parallel over tasks

Only basis elements touching a batch contribute to work done for batch

Becke, J. Phys. Chem 1988; Delley, J.Phys. Chem. 1990; Havu, J Comp. Phys 2009

MoISSI/ELSI 2018

August 17, 2018, 2:40 pm EST

Divide-And-Conquer on the Real-Space Matrix

Each batch only contributes to a small number of real-space matrix elements...

Becke, J. Phys. Chem 1988; Delley, J.Phys. Chem. 1990; Havu, J Comp. Phys 2009

MoISSI/ELSI 2018

August 17, 2018, 2:40 pm EST

Divide-And-Conquer on the Real-Space Matrix

Becke, J. Phys. Chem 1988; Delley, J.Phys. Chem. 1990; Havu, J Comp. Phys 2009

MoISSI/ELSI 2018

August 17, 2018, 2:40 pm EST www.williamphuhn.com

Hbatch

Each batch only contributes to a small number of real-space matrix elements...

... so for each batch, we only calculate a reduced H^{batch} on all basis elements touching that batch

Basis Functions Touching Batch

Becke, J. Phys. Chem 1988; Delley, J.Phys. Chem. 1990; Havu, J Comp. Phys 2009

MoISSI/ELSI 2018

August 17, 2018, 2:40 pm EST

Hbatch,max

Basis Functions Touching Batch

Each batch only contributes to a small number of real-space matrix elements...

... so for each batch, we only calculate a reduced H^{batch} on all basis elements touching that batch

Since basis elements are localized, there is an maximum limit on the size of H^{batch}!

Becke, J. Phys. Chem 1988; Delley, J.Phys. Chem. 1990; Havu, J Comp. Phys 2009

MoISSI/ELSI 2018

August 17, 2018, 2:40 pm EST

Basis Functions Touching Batch

Each batch only contributes to a small number of real-space matrix elements...

... so for each batch, we only calculate a reduced H^{batch} on all basis elements touching that batch

Since basis elements are localized, there is an maximum limit on the size of H^{batch}!

Fixed max work done per batch * O(N_{atom}) number of batches = O(N_{atom}) overall work

Becke, J. Phys. Chem 1988; Delley, J.Phys. Chem. 1990; Havu, J Comp. Phys 2009

MoISSI/ELSI 2018

August 17, 2018, 2:40 pm EST

Two clusters used:

- timewarp: Development cluster of aims group at Duke University
- PSG: Benchmarking cluster for Tesla GPGPUs at NVIDIA
- Three types of nodes used:

Node	Ivy Bridge/GP100	Haswell/P100	Skylake/V100		
Cluster	timewarp	PSG	PSG		
	2x Intel Xeon E5-2670v2	2x Intel Xeon E5-2698v3	2x Intel Xeon Gold 6148		
Cro	(20 cores*, Ivy Bridge)	(32 cores, Haswell)	(20 cores, Skylake)		
GPGPU**	Ix Quadro GP100	4x Tesla P100	4x Tesla V I 00		
	(Pascal)	(Pascal)	(Volta)		
MPI Tasks/GPGPUs	16/1	32/4	20/4		
Compilers/Libraries	ifort 14.0, MKL 11.1.1, IMPI 4.1.3, CUDA 8.0	ifort 17.0, MKL 11.3.3, IMPI 5.0.3, CUDA 9.1	ifort 17.0, MKL 11.3.3, IMPI 5.0.3, CUDA 9.1		
 * Due to usage of MPS, only 16 MPI tasks used for Ivy Bridge/GP100 ** All GPGPUs are PCI-E models 					

MoISSI/ELSI 2018

August 17, 2018, 2:40 pm EST
A Complete All-Electron Calculation: Si (3x3x3)

We perform a complete all-electron calculation including forces and analytical stress tensor for a 3x3x3 supercell of Si

3x3x3 supercell (54 atoms)

MoISSI/ELSI 2018

August 17, 2018, 2:40 pm EST

A Complete All-Electron Calculation: Si (3x3x3)

We perform a complete all-electron calculation including forces and analytical stress tensor for a 3x3x3 supercell of Si

This calculation is representative of a single iteration of a geometric optimization calculation, containing

- Initialization (not GPGPU accelerated)
- I2 "Normal" SCF Iterations
- I SCF + Forces + Analytical Stress Tensor Iteration

Diamond Si 3x3x3 supercell (54 atoms)

MoISSI/ELSI 2018

A Complete All-Electron Calculation: Si (3x3x3)

Diamond Si 3x3x3 supercell (54 atoms) We perform a complete all-electron calculation including forces and analytical stress tensor for a 3x3x3 supercell of Si

This calculation is representative of a single iteration of a geometric optimization calculation, containing

- Initialization (not GPGPU accelerated)
- 12 "Normal" SCF Iterations
- I SCF + Forces + Analytical Stress Tensor Iteration

Computational Details:

- PBE functional
- Tight integration settings
- Tight basis sets
- SCF k-grid: IxIxI
- Load balancing for GPGPU, CSR for CPU

MoISSI/ELSI 2018

August 17, 2018, 2:40 pm EST

August 17, 2018, 2:40 pm EST

MoISSI/ELSI 2018

August 17, 2018, 2:40 pm EST

August 17, 2018, 2:40 pm EST

Back to PBE...

Speedups for Diamond Si (3x3x3)

	Ivy Bridge/GP100	Haswell/P100	Skylake/V100
SCF Iteration	2.9x	2.5x	3.1x
SCF Iteration + Forces	4.4x	5.8x	5.7x
SCF Iteration + Forces + AS	5.2x	6.7x	7.8x
Entire Calculation	3.8x	3.7x	4.0 x

Back to PBE...

Speedups for Diamond Si (3x3x3)

	Ivy Bridge/GP100	Haswell/P100	Skylake/V100
SCF Iteration	2.9x	2.5x	3.1x
SCF Iteration + Forces	4.4x	5.8x	5.7x
SCF Iteration + Forces + AS	5.2x	6.7x	7.8x
Entire Calculation	3.8x	3.7x	4.0 x

Do these results generalize to other materials?

103 Compound Material Benchmark Set

To systematically verify the performance of the GPGPU code, we use the 103 compound material test set from Huhn and Blum:

PHYSICAL REVIEW MATERIALS 1, 033803 (2017)	Family	No. materials	Materials	
One-hundred-three compound band-structure benchmark of post-self-consistent spin-orbit coupling treatments in density functional theory	Elementals	45	$\underline{\text{Be, C}} [\text{GRA}], \text{Ne, } \underline{\text{Mg}},$ Al, Si, Ca, Sc, Ti, V, Cr, Mp, Eq. Co, Ni	
William P. Huhn [*] and Volker Blum [†]			Cu, Zn, Ge, Sr, Y,	
(Received 4 May 2017; published 30 August 2017)			Zr, Nb, Mo, Tc, Ru,	
			Rh, Pd, Ag, <u>Cd</u> , Sn,	
			Xe, Ba, Lu, Hf, Ta,	
3x3x3 supercells of the primitive cell for a			W, Re, Os, II, Pt, Au Tl Ph Bi Po	
given material was used vielding unit cell	Compound	37	C [DIA], MgO, AlN [WUR],	
given material was used, yielding unit cen	semiconductors		AlN [ZB], SiC, BP, AlP,	
sizes ranging from 27, 54, and 108 atoms			MgS, ZnO, ZnS [WUR],	
			ZnS [ZB], GaN [WUK], GaN [ZB] GaP AlAs	
			BAs, GaAs, MgSe, ZnSe,	
Computational Dataila			CdS [WUR], CdS [ZB],	
Computational Details.			CdSe [WUR], CdSe [ZB],	
PBF functional			InN, InP, InAs, AlSb, CaSh, InSh, ZaTa, CdTa	
			HgS. HgSe. HgTe.	
 Tight integration settings 			PbS, PbSe, PbTe	
	Alkali	21	LiF, NaF, LiCl, NaCl,	
• I Ight basis sets	halides		KF, KCl, LiBr, NaBr,	
• SCE k-grid. IVIVI			Lil Nal KI Rbi	
			CsF, CsCl [CSCL],	
 Load balancing was used (critical!) 			CsCl [RS], CsBr, CsI	

MoISSI/ELSI 2018

August 17, 2018, 2:40 pm EST

MoISSI/ELSI 2018

August 17, 2018, 2:40 pm EST

MoISSI/ELSI 2018

August 17, 2018, 2:40 pm EST

MoISSI/ELSI 2018

August 17, 2018, 2:40 pm EST

MoISSI/ELSI 2018

August 17, 2018, 2:40 pm EST

MoISSI/ELSI 2018

August 17, 2018, 2:40 pm EST

MoISSI/ELSI 2018

August 17, 2018, 2:40 pm EST

MoISSI/ELSI 2018

August 17, 2018, 2:40 pm EST

MoISSI/ELSI 2018

August 17, 2018, 2:40 pm EST

SCF Iteration + Forces + Stress for 103 Compounds: Skylake/V100

MoISSI/ELSI 2018

August 17, 2018, 2:40 pm EST

TL; DR

Speedups for Diamond Si (3x3x3)

	Ivy Bridge/GP100	Haswell/P100	Skylake/V100	
SCF Iteration	2.9x	2.5x	3.1x	
SCF Iteration + Forces	4.4x	5.8x	5.7x	
SCF Iteration + Forces + AS	5.2x	6.7x	7.8x	
Entire Calculation	3.8x	3.7x	4.0 x	
Speedups for 103 Compound Test Set				
SCF Iteration	2.4x	2.1x	2.4x	
SCF Iteration + Forces	3.9x	4.5x	4.6x	
SCF Iteration + Forces + AS	4.5x	6.6x	6.6x	
MolSSI/ELSI 2018	August 17, 2018, 2:40	0 pm EST w	ww.williamphuhn.com	

TL; DR

Speedups for Diamond Si (3x3x3)

	Ivy Bridge/GP100	Haswell/P100	Skylake/V100	
SCF Iteration	2.9x	2.5x	3.1x	
SCF Iteration + Forces	4.4x	5.8x	5.7x	
SCF Iteration + Forces + AS	5.2x	6.7x	7.8x	
Entire Calculation	3.8x	3.7x	4.0 x	
Speedups for 103 Compound Test Set				
SCF Iteration	2.4x	2.1x	2.4x	
SCF Iteration + Forces	3.9x	4.5x	4.6x	
SCF Iteration + Forces + AS	4.5x	6.6x	6.6x	

MoISSI/ELSI 2018

August 17, 2018, 2:40 pm EST

TL; DR

Speedups for Diamond Si (3x3x3)

	Ivy Bridge/GP100	Haswell/P100	Skylake/V100
SCF Iteration	2.9x	2.5x	3.1x
SCF Iteration + Forces	4.4x	5.8x	5.7x
SCF Iteration + Forces + AS	5 2x But does	6.7x it scale?	7.8x
Entire Calculation	3.8x	3.7x	4.0 x
Speedups for 103 Compound Test Set			
SCF Iteration	2.4x	2.1x	2.4x
SCF Iteration + Forces	3.9x	4.5x	4.6x
SCF Iteration + Forces + AS	4.5x	6.6x	6.6x

MoISSI/ELSI 2018

August 17, 2018, 2:40 pm EST

Strong Scaling for GPGPU Calculations: 375 Atom Bi₂Se₃ Slab

MoISSI/ELSI 2018

August 17, 2018, 2:40 pm EST

SCF Iteration + Forces + Stress on Titan: 375 Atom Bi₂Se₃ Slab

SCF Iteration + Forces + Stress on Titan: 375 Atom Bi₂Se₃ Slab

All-electron real-space DFT can be effectively GPGPU-accelerated, with ideal scaling on HPC resources, using domain decomposition

For realistic (non-hybrid) calculations with geometry relaxation, can expect $\approx 3x-4x$ speedup with FHI-aims on modern architectures

GPGPU acceleration of real-space operations shown in this talk available on mainline FHI-aims git repo, production-ready

Work supported by the LDRD Program of ORNL managed by UT-Battle, LLC, for the U.S. DOE and by the Oak Ridge Leadership Computing Facility, which is a DOE Office of Science User Facility supported under Contract DE-AC05-00OR22725.

We gratefully acknowledge the support of NVIDIA Corporation with the donation of the Quadro GP100 and Titan V used for local development, as well as access to their PSG cluster.

MoISSI/ELSI 2018

August 17, 2018, 2:40 pm EST