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Fermi Operator Expansion I

FOE method expands Γ using a rational approximation as

Γ ≈
P∑
l=1

Im
(
ωρl (H − (zl + µ)S)−1

)
. (1)

The chemical potential µ chosen to ensure that

Nβ(µ) = Tr[fβ(Λ− µI )] = Tr[SΓ] = Ne , (2)

I Computational complexity 1D system: O(Ne); 2D system:
O(N1.5

e ), 3D system O(N2
e ).

I Contour integral poles for DM, EDM and FDM.

I Easy parallelization: intra-pole and inner-pole.

I Works for both metallic system and semi-conductors.



PEXSI: Pole EXpansion Selected Inversion package

I Before v1.0, PEXSI use 40-80 contour integral poles in real
calculations

I Scale up to thousands of CPU cores for single pole

I Tow level parallelization: embarrassing parallel over the poles
and Nprow × Npcolumn parallel within single pole

I Integrated into BigDFT, CP2K, SIESTA, DGDFT, FHI-aims,
QuantumWise ATK, ESL Bundle

I Typically used for accelerating material simulation with more
than 10, 000 atoms

I one challenge is determine the chemical potential µ, so that
|Necomputed − Neexact | within given tolerance.



PEXSI Version 1.0.3

I url: www.pexsi.org

I includes Moussa’s
optimized pole
expansion(DM only)

I robust chemical potential
determination.



PEXSI: part of ELSI



Challenge for FOE methods: Determine chemical potential

The chemical potential µ ensures:

Nβ(µ) = Tr[fβ(Λ− µI )] = Tr[SΓ] = Ne , (3)

where Ne is the number of electrons.
Problem: pole expansion does not calculate eigenvalue, thus can
not directly get chemical potential.

I bisection: several PEXSI evaluation FOE in single SCF.

I Newton’s method: not robust, over-correction in the process.

I inertia counting + Newton’s method

our goal: a robust and efficient chemical potential determination
method



Idea: take a look back at iterative method

     1E−10

     1E−09

     1E−08

     1E−07

     1E−06

     1E−05

     1E−04

     1E−03

     1E−02

     1E−01

     1E+00

 0  10  20  30  40  50  60  70  80

Number of Iteration

norm(Vout−Vin)
Max eigen residual
Min eigen residual

Figure 1: Si-32 system, 64
bands, PBE calculation with
plane wave iterative method

I Not necessary to
converge to correct
chemical potential in
each SCF step.

I Keep rigorous upper and
lower bounds of the
chemical potential

I The bounds will converge
with the SCF iterations.

I Only one PEXSI
evaluation will be carries
in each SCF step.



Bounds estimation with inertia counting
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(c) step 3.
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Figure 2: Refinement of the bounds for the chemical potential in 4 inertia
counting steps for the PNR 180 system. In step 4, the inertia counting
procedure stops because the upper and lower bounds can not be further
refined.



Fine level: multiple µ evaluation of Fermi Operator

In a single SCF step:

I launch Nµ Fermi operator evaluation simultaneously.

I update the (µmin, µmax) with calculated results.

I Interpolate (µmin, µmax) and the DM

between SCF steps:

I keep rigorous bounds of (µmin, µmax) by updating with (µmin

+ ∆Vmin , µmax + ∆Vmax).
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DOS of the PNR and GRN 180 atoms system
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Figure 4: The total densities of states(DOS) of PNR and GRN 180
atoms, respectively. The fermi levels are marked by the green dash line.

The tests are performed on Edison, NERSC, with our DGDFT
package.



Pole Expansion Accuracy: Moussa’s optimized and
Contour integral pole expansion
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Figure 5: Error of the energy and force of the PEXSI method with respect
to the number of poles for the graphene 180 system.



Pole Expansion SCF Accuracy: PNR and GRN 180 system
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(a) PNR 180.
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Figure 6: SCF convergence with ScaLAPACK and PEXSI-old and
PEXSI-new along the SCF steps for PNR 180 and GRN 180 systems.



PEXSI Timing
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Figure 7: Comparison of the performance of PEXSI-new, PEXSI-old and
diagonalization for the GRN 6480 system.



MD simulation
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Figure 8: The potential energy, total energy and the drift of the total
energy using the PEXSI-new method.



Conclusion and on-going work

I We present a robust and efficient algorithm in determine the
chemical potential in the PEXSI for solving KSDFT.

I Only one PEXSI evaluation is performed in a single SCF step.

I The chemical potential converges with the SCF iterations.

I Moussa’s optimized pole expansion is set as default in PEXSI
1.0.3

I Two µ parallelization is recommended for PEXSI 1.0.3

I Tests show that we have a speedup of 2x for Graphene 6480
atoms.

I The Journal of Chemical Physics 147, 144107 (2017);
https://doi.org/10.1063/1.5000255

I on-going: optimized poles for DM, EDM, FDM in the next
version.



Part II: fast rt-TDDFT method

I Explicit time integrator.

I Parallel transport gauge and implicit time integrator

I Testing results

I Conclusion



Time Dependent Density Functional Theory (TDDFT)
Introduction

I Explicit time propagator, solve the TDDFT equation by
directly calculate:

ı∂tψi (t) = H(t)ψi (t). (4)

I major drawback: it requires a small time step size satisfying
∆t . ‖H‖−1 due to the stability restriction. For plane wave
basis set, whose H spectrum is more than 40 Ryb, ∆t is set
to be smaller than 1 as.



Implicit time propagator for TDDFT

I wavefunction ψ(t) oscillate fast, while the density matrix P(t)
oscillate much slower

I An optimal gauge choice given by parallel transport
formulation can approximate the obitals into a straight line,
give us a much bigger time step(50− 100 as) in than explicit
method.

I This PT-CN method can be used in any RT-TDDFT
calculation package.



Implicit time progagtor for TDDFT

Real parts of ψ(x0, t), ϕ(x0, t) at x0 = 25.0 and Dipole moment



TDDFT optimal gauge I

TDDFT equations

ı∂tψi (t) = H(t,P(t))ψi , i = 1, . . . ,Ne . (5)

Here Ψ(t) = [ψ1, . . . , ψNe ] are the electron orbitals,and density matrix
P(t) = Ψ(t)Ψ∗(t).
Suppose another set of Orbitals Φ(t) = Ψ(t)U(t) satisfies:

P(t) = Ψ(t)Ψ∗(t) = Φ(t)Φ∗(t) (6)

and von Neumann equation:

ı∂tP = [H,P] = HP − PH. (7)

Our goal: optimize the gauge matrix, so that the transformed orbitals
Φ(t) vary as slowly as possible, without altering the density matrix. This
results in the following variational problem

min
U(t)

‖Φ̇‖2F , s.t. Φ(t) = Ψ(t)U(t),U∗(t)U(t) = INe . (8)



TDDFT optimal gauge II

Here ‖Φ̇‖2F := Tr[Φ̇∗Φ̇] measures the Frobenius norm of the time
derivative of the transformed orbitals. The minimizer of (8), in terms of
Φ, satisfies

PΦ̇ = 0. (9)

implicitly defines a gauge choice for each U(t), and this gauge is called
the parallel transport gauge. The governing equation of Φ, together with
the von Neumann equation, can be written as

ı∂tΦ = HΦ− Φ(Φ∗HΦ), P(t) = Φ(t)Φ∗(t). (10)

Preprint: Fast real-time time-dependent density functional theory

calculations with the parallel transport gauge



PT-CN method: implicit time integrator I

The implicit Crank-Nicolson scheme for the parallel transport dynamics
(PT-CN):

Φn+1 + ı
∆t

2

{
Hn+1Φn+1 − Φn+1

(
Φ∗

n+1Hn+1Φn+1

)}
=Φn − ı

∆t

2
{HnΦn − Φn (Φ∗

nHnΦn)} .
(11)

The equation can be solved self-consistently with a preconditioned
Anderson mixing scheme.
∆t = 10− 100 as.



TDDFT tests compare between S-RK4 and PT-CN

I TDDFT with an external field.
I optical spectrum of anthracene
I place benzene in a laser field

I Ultra-fast ion collion
I fast Cl- ion collide into a 112 atom Graphene sheet



Anthracene optical spectrum
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Figure 9: Anthracene and its absorption spectrum.



Benzene driven by a laser external field

Figure 10: Electronic dynamics of a benzene driven by a laser with
wavelength λ = 800 nm in (a)(b), 250 nm in (c)(d).



Benzene with laser – accuracy and efficiency

Method ∆t (fs) AEI (eV) AOE (eV) MVM Speedup

S-RK4 0.0005 0.5260 / 152000 /
PT-CN 0.005 0.5340 0.0080 28610 5.3
PT-CN 0.0065 0.5347 0.0087 22649 6.7
PT-CN 0.0075 0.5362 0.0102 21943 6.9
PT-CN 0.01 0.5435 0.0175 15817 9.6
PT-CN 0.02 0.5932 0.0672 12110 12.6

Table 1: The accuracy is measured using the average energy increase
(AEI) after 25.0 fs and the average overestimated energy (AOE) after
25.0 fs. The efficiency is measured using the total number of
matrix-vector multiplications (MVM) during the time interval from 5.5 fs
to 24.5 fs, and the computational speedup.



Cl- ion collide with graphene sheet

Figure 11: Model of Cl-Graphene collision. Red point is the center of the
graphene ring.



BOMD & TDDFT – Ion collision
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Figure 12: Energy transfer comparison between BOMD and TDDFT.



Density of States – Ion collision
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Figure 13: Density of state after the ion collision. Green dashed line:
Fermi energy.



Currently working on: Hybrid functional TDDFT

Figure 14: Plane wave TDDFT with 1024 atoms under a 389 nm field

Paper in preparation.



Conclusion & on-going work

I An optimized gauge choice to improve the numerical efficiency
with no loss of accuracy is demonstrated.

I Tests show it can speedup the RT-TDDFT by a factor of
5-10x for systems between 32-1000 atoms.

I GPU hybrid TDDFT method next.
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