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l Can be the scaling bottleneck of HF and DFT based methods.
l 20% - 80% of the eigensolutions might be required.
l Eigenvalue spectrum can be clustered and may contain large gaps.
l Problem size scaling is cubic for flops, quadratic for memory.
l Matrices are naturally sparse for large problems with localized basis sets.
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The eigenvalue problem Fx = λSx



l Matrix representation:

l Solution algorithm
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Eigensolvers

Direct
q Results in finite amount of steps
q Based on transformations or factorizations.
q For large portion of eigensolutions
q Robust, generally applicable
q Nonzero structure may change

Iterative
q Number of steps depends on input
q Based on initial guess
q For small portion of eigensolutions 
q Accuracy depends on input
q Nonzeros structure is preserved

Dense
q Uniform data layout, faster access
q Memory O(N2)
q Computation O(N3)
q ScaLAPACK, Elemental, ELPA

Sparse
q Nonuniform data layout, slower access
q Memory O(N) - O(N2)
q Computation O(N) - O(N3)
q SLEPc, Pardiso, MUMPS
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SIPs: Shift-and-Invert Parallel 
Spectral Transformations

Find all the eigenpairs in a given interval [a, b].

1. Shift:  F −σ iS( )xi = λi −σ i( )Sxi
2. Factorize:  F −σ iS = LDL

T

3. Compute inertia: mi  

4. Invert:  K = F −σ 1S( )−1S

5. Solve:  Kxi =
1

λ −σ 1

xi

6. Repeat 1-5 if necessary

1. Zhang, H., Smith, B., Sternberg, M. & Zapol, P. SIPs. ACM Trans. Math. Softw. 33, 9–es (2007).
2. Keçeli M., Zhang, H., Zapol, P., Dixon A.D., Wagner A, J. Comput. Chem. 37, 448 (2016) .

σ 2 = −0.2 σ 1 = 0.8a = −0.2 b = 0.8m2 = 12 m1 = 15m2 = 12 m1 = 15m2 = 12 m1 = 15m3 = 13m2 = 12 m1 = 15σ 3 = 0.3m2 = 12 m1 = 15m3 = 13

a = −0.2 b = 0.3

a = 0.3 b = 0.8
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Parallelization

λmin" λmax"

slice&1& slice&2& ...& ...& ...& ...& ...& slice&8&

rank=0&
idEps=0&
idMat=0&

rank=4&
idEps=1&
idMat=0&

...& ...& ...& ...& ...&
rank=28&
idEps=7&
idMat=0&

rank=1&
idEps=0&
idMat=1&

rank=5&
idEps=1&
idMat=1&

...& ...& ...& ...& ...&
rank=29&
idEps=7&
idMat=1&

rank=2&
idEps=0&
idMat=2&

rank=6&
idEps=1&
idMat=2&

...& ...& ...& ...& ...&
rank=30&
idEps=7&
idMat=2&

rank=3&
idEps=0&
idMat=3&

rank=7&
idEps=1&
idMat=3&

...& ...& ...& ...& ...&
rank=31&
idEps=7&
idMat=3&

l Two layers of parallelism based on MPI.
l Horizontal one through slicing. (no communications)
l Vertical one through in slice operations. (heavy communications)
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SIPs Implementation

Remember the parallel platform paradox
“The average time required to implement a moderate sized application is equivalent to half-life 
of the parallel computing platform”, John Reynders, 1996.
l Use well-designed mathematical libraries as the building blocks.
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Building Blocks

l PETSc: https://www.mcs.anl.gov/petsc/
• Portable, Extensible Toolkit for Scientific Computation
• A suite of data structures and routines for the scalable (parallel) solution of scientific 

applications modeled by partial differential equations.
• 2009 R&D Award, 2015 SIAM/ACM prize,  5 Gordon Bell prizes for PETSc applications

l SLEPc: http://slepc.upv.es/
• Scalable Library for Eigenvalue Problem Computations
• Built on top of PETSc

Description

SLEPc, the Scalable Library for Eigenvalue Problem Com-
putations, is a software library for the solution of large,
sparse eigenvalue problems on parallel computers. It
can be used for problems formulated in either standard
or generalized form, both Hermitian and non-Hermitian,
with either real or complex arithmetic, as well as other re-
lated problems such as the singular value decomposition
(SVD) or the polynomial eigenvalue problem (PEP).

SLEPc focuses on sparse problems, such as those arising
from the discretization of partial differential equations.
Several eigensolvers are available, including Krylov-
Schur and Jacobi-Davidson. SLEPc also provides built-
in support for different types of problems and spectral
transformations such as shift-and-invert.

SVD Solver

Cross

Product

Cyclic

Matrix

Thick R.

Lanczos

Polynomial Eigensolver

TOAR
Linear-

ization
Q-Arnoldi

Linear Eigensolver

Krylov-

Schur
Arnoldi Lanczos GD JD RQCG CISS

Spectral Transformation

Shift Shift-and-invert Cayley Preconditioner

Numerical components of SLEPc.

SLEPc is built on top of PETSc (Portable, Extensible Tool-
kit for Scientific Computation, www.mcs.anl.gov/petsc)
and extends it with all the functionality necessary for the
solution of eigenvalue problems.

SLEPc also leverages well-established eigensolver pack-
ages such as ARPACK, PRIMME, BLZPACK, TRLAN, and
BLOPEX, integrating them seamlessly.

Highlights

• Easy programming in PETSc’s object-oriented style
• Data-structure neutral implementation
• Run-time flexibility, giving full control over the so-

lution process
• Portability to a wide range of parallel platforms
• Usable from code written in C, C++ and Fortran
• Extensive documentation

Parallel Solution of Large-scale
Sparse Eigenvalue Problems

Ax = �x Ax = �Bx Av = �u

Applications

SLEPc is currently being used in numerous applications
from different areas, including:

• Neutron diffusion and transport
• Computational electromagnetics
• Computational chemistry and materials science
• Plasma physics
• Acoustics
• Flow stability and bifurcation analysis
• Statistics and information retrieval
• Model reduction
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Dominant modes of the power distribution inside a nuclear reactor

Contact Information

Availability

The SLEPc distribution file can be obtained through the SLEPc web site. The documentation includes a users guide,
manual pages, and a collection of examples. SLEPc is supported via e-mail at slepc-maint@upv.es.
Development Team

J. E. Roman, C. Campos, E. Romero, A. Tomas
Universitat Politècnica de València (Spain)
Web Site

http://slepc.upv.es

MPI + BLAS

VecMat IS

KSP PC

Profiler/Viewer

SLEPc

PETSc

https://www.mcs.anl.gov/petsc/
http://slepc.upv.es/
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SIPs Implementation in 2007

l Organize subgroups of MPI communicators. 
l Select shifts
l Bookkeep and validate eigensolutions
l Balance parallel workload

MPI + BLAS

PETSc

SLEPc

MUMPS

ARPACK

SIPs

1. Zhang, H., Smith, B., Sternberg, M. & Zapol, P. SIPs. ACM Trans. Math. Softw. 33, 9 (2007).
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SIPs Implementation in 2014

MPI + BLAS

PETSc

SLEPc

MUMPS

PT-Scotch
ParMETISSIPs

1. Campos, C. & Román, J. E. Numer. Algorithms, 60, 279 (2012).
2. Keçeli M., Zhang, H., Zapol, P., Dixon A.D., Wagner A, J. Comput. Chem. 37, 448 (2016) .

l Organize subgroups of MPI communicators. 
l Select slices (uniform width)
l Bookkeep eigensolutions
l Use parallel matrix reordering 
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SIPs Implementation in 2016

MPI + BLAS

PETSc

SLEPc

MUMPS

PT-Scotch
ParMETISSIPs

1. Keçeli M., Corsetti F., Campos C., Roman J., Vâzquez-Mayagoitia A,  Zhang, H., Zapol, P., & Wagner A, F.  J. Comput. Chem. (2018)

l Adjust slices with inertia or eigenvalue information
l Compute density matrix
l SIPs à QETSc à SIPs à SLEPc-SIPs



l Matrices from DFTB gamma point calculations.
l Carbon NanoTube: CNT8000 – CNT512000 
l Diamond NanoWire: DNW8000 – DNW128000
l Bulk Diamond Crystal: BDC8000 – BDC64000
l Positions of atoms are randomly deviated from eqb.
l More than 60% of eigenpairs are computed.
l All calculations are done on ALCF supercomputers

• 786,432 IBM BG/Q cores
• 16 cores per node, 
• 1 GB RAM per core
• Peak at 10 petaflops
• Interconnect: 5D Torus
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Benchmark calculations
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Sparsity after factorization

2 TB 

2 GB 25%

58%
0.1%

6%

Filled symbols 
show the 

number of 
nonzeros after 
factorization
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Reordering methods

Typea RCM AMD AMF METIS Scotch 

CNT8000 7.7 8.0 7.7 6.9 6.9 

CNW8000 5.4 5.7 4.9 4.8 4.6 

BDC8000 11.1 11.2 10.5 9.6 9.5 
!

l Fill-in ratio is the nnz of the factor divided by the nnz of the original 
matrix.

l Different reordering algorithms give different fill-in ratios. 

l Only METIS and Scotch has parallel implementations: ParMETIS
and PT-Scotch.



15

Parmetis vs PT-Scotch
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SIPs profile – CNT8000



100 sec

90% parallelized

Max speedup x10
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SIPs profile – CNT8000

  

Amdahl's law: 

tn = t1 f + 1− f
n

⎛
⎝⎜

⎞
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CNT8000
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Strong scaling

16 cores per slice up to 250,000 cores
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Weak scaling

Ratio = Number of basis functions
Number of processes



Two distinct 
advantages for SCF:
qSymbolic factorization can be 

avoided since non-zero 
structure does not change

qLoad-balance can  be 
improved as the eigenvalues 
converge
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Self-Consistent Field Method

Read Input

Assemble S & 
Guess D 

Assemble F using D

Solve GEP & Assemble D

Converged?Done Yes No

F D( )x = λSx,  D = ω ixi
i=1

nocc

∑ xi
T

New Structure

SCF energy and gradient

Relaxed?Done Yes No
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SIESTA Integration

“"SIESTA is both a method and its computer program implementation, to perform efficient 
electronic structure calculations and ab initio molecular dynamics simulations of molecules 
and solids.”

Localized numerical basis sets, sparse Hamiltonian, modular code.

MPI + BLAS 

PETSc

SLEPc
MUMPS

or Pardiso

PT-Scotch
or ParMETIS

SIESTA-SIPs



23

Load balance and eigenvalue 
distributions
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Load Balance

SIESTA DFT CG relaxation for BN monolayer, converged in 3MD steps.

LDA with DZP 
512 atoms, 
6656 bfs,
nnz 9.2 %

Ratio = tmax
tmean
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Benchmark calculations

384 atoms, 2944 basis functions
nnz 7% 

1536 atoms, 11776 basis functions
nnz 1.8% 

SIESTA DFT energy and gradient, converged in 13 SCF iterations.
LDA for polyethylene, GGA for water clusters with DZP basis sets

(a) 

(b) 
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Conclusions and outlook for SIPs

l Analyzed the performance and modeled the scaling behavior.
l We demonstrated the strong scaling up to 250k and 500k basis functions
l A new implementation is available through SLEPc and also available in ELSI.
l Performance is better if you don’t have a gap unlike other fast solvers and 

improves as SCF converges.
l Γ-point only, performance decreases with more multiplicities.
l At the strong scaling limit (1 factorization per slice, up to 40 eigenpairs) 

should be compatible with PEXSI.
l Next steps:

• Report/fix bug that prevents us use MKL
• Estimate eigenvalue distribution with cheaper methods.
• MKL-Pardiso integration, requires PETSc/MKL
• Collaboration through ALCC, INCITE, ADSP
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VALENCE

l Based on valence bond theory and overlapping (nonorthogonal) linear 
combinations of atomic orbitals (OLCAO)

l Soon to be released. 

Graham Fletcher (ANL)
Colleen Bertoni (ANL)
Michael D’Mello (Intel/ANL)
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SIPs vs Elemental

Fixed resources 
16,384 cores



l Ordering of the original matrix is crucial to minimize fill-ins

l How can we find the best ordering to minimize fill-ins?
• Computing the minimum fill-in is NP-complete.

• No deterministic algorithm exists to find it in polynomial time.
• There are a number of heuristic algorithms based on graph theory for 

approximate solutions. 
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Fill-ins due to factorizations

Bindel, Fall 2012 Matrix Computations (CS 6210)

Putting in ⇥ to indicate a nonzero element, we have

2

66664

⇥ ⇥ ⇥ ⇥ ⇥
⇥ ⇥
⇥ ⇥
⇥ ⇥
⇥ ⇥

3
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77775
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⇥ ⇥ ⇥ ⇥ ⇥
⇥ ⇥ ⇥ ⇥

⇥ ⇥ ⇥
⇥ ⇥

⇥

3

77775
.

That is, L and U have many more nonzeros than A. These nonzero locations
that appear in L and U and not in A are called fill-in. On the other hand,
if we cyclically permute the rows and columns of A, we have

2

66664

⇥ ⇥
⇥ ⇥

⇥ ⇥
⇥ ⇥
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3

77775
=

2

66664
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⇥
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⇥
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3

77775

2

66664

⇥ ⇥
⇥ ⇥

⇥ ⇥
⇥ ⇥

⇥

3

77775
.

That is, the factorization of PAP
T has no fill-in.

A sparse matrix A can be viewed as an adjacency matrices for an associ-
ated graphs: make one node for each row, and connect node i to node j if
Aij 6= 0. The graphs for the two “arrow” matrices above are:

5

2 3 4 5 1 2 3 4

1

These graphs of both our example matrices are trees, and they di↵er only
in how the nodes are labeled. In the original matrix, the root node is assigned
the first label; in the second matrix, the root node is labeled after all the
children. Clearly, the latter label order is superior for Gaussian elimination.
This turns out to be a general fact: if the graph for a (structurally symmetric)
sparse matrix S is a tree, and if the labels are ordered so that each node
appears after any children it may have, then there is no fill-in: that is, L and
U have nonzeros only where S has nonzeros.

Why should we have no fill when factoring a matrix for a tree ordered
from the leaves up? To answer this, we think about what happens in the

*M. Yannakakis. SIAM J. Algebraic Discrete Methods, 2:77-79,1981
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Reordering matrices

Original

Reordered
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SIESTA-SIPs applications


