SLEPc-SIPs: Massively Parallel Sparse Eigensolver for Electronic Structure Calculations
 Murat Keçeli
 Computational Science Division
 Argonne National Laboratory

Acknowledgment

Hong Zhang, Peter Zapol, Al Wagner, Âlvaro Vâzquez-Mayagoitia (ANL) Jeff Hammond (Intel)

Work supported by US DOE, Office of Science under Contract No. DE-AC0206CH11357.
Computations are done on Blues, Vesta, Mira, Theta at ANL, Cori at NERSC.

1. Zhang, H., Smith, B., Sternberg, M. \& Zapol, P. SIPs. ACM Trans. Math. Softw. 33, 9 (2007).
2. Campos, C. \& Román, J. E. Numer. Algorithms, 60, 279 (2012).
3. Keçeli M., Zhang, H., Zapol, P., Dixon A.D., \& Wagner A. F., J. Comput. Chem. 37, 448 (2016).
4. Keçeli M., Corsetti F., Campos C., Roman J., Vâzquez-Mayagoitia A, Zhang, H., Zapol, P., \& Wagner A, F. J. Comput. Chem. (2018).

The eigenvalue problem $\mathbf{F x}=\lambda \mathbf{S x}$

$$
\left(\begin{array}{cccc}
F_{11} & & & \\
F_{21} & F_{22} & & \\
\vdots & \vdots & \ddots & \\
F_{N 1} & F_{N 2} & \cdots & F_{N N}
\end{array}\right)\left(\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{N}
\end{array}\right)=\lambda\left(\begin{array}{cccc}
S_{11} & & & \\
S_{21} & S_{22} & & \\
\vdots & \vdots & \ddots & \\
S_{N 1} & S_{N 2} & \cdots & S_{N N}
\end{array}\right)\left(\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{N}
\end{array}\right)
$$

- Can be the scaling bottleneck of HF and DFT based methods.
- $20 \%-80 \%$ of the eigensolutions might be required.
- Eigenvalue spectrum can be clustered and may contain large gaps.
- Problem size scaling is cubic for flops, quadratic for memory.
- Matrices are naturally sparse for large problems with localized basis sets.

Eigensolvers

- Matrix representation:

Dense

\square Uniform data layout, faster access
\square Memory $\mathbf{O}\left(N^{2}\right)$
\square Computation $\mathbf{O}\left(N^{3}\right)$
\square ScaLAPACK, Elemental, ELPA

Sparse

\square Nonuniform data layout, slower access
\square Memory $\mathbf{O}(N)-\mathbf{O}\left(N^{2}\right)$
\square Computation $\mathbf{O}(N)-\mathbf{O}\left(N^{3}\right)$
\square SLEPc, Pardiso, MUMPS

- Solution algorithm

Direct

\square Results in finite amount of steps
Based on transformations or factorizations.
\square For large portion of eigensolutions
\square Robust, generally applicable
\square Nonzero structure may change

Iterative

\square Number of steps depends on input
\square Based on initial guess
\square For small portion of eigensolutions
\square Accuracy depends on input
\square Nonzeros structure is preserved

SIPs: Shift-and-Invert Parallel Spectral Transformations

Find all the eigenpairs in agiven interval $[a, b]$.

1. Shift: $\left(\mathbf{F}-\sigma_{i} \mathbf{S}\right) \mathbf{x}_{i}=\left(\lambda_{i}-\sigma_{i}\right) \mathbf{S} \mathbf{x}_{i}$
2. Factorize: $\mathbf{F}-\sigma_{i} \mathbf{S}=\mathbf{L} \mathbf{D L}^{\mathrm{T}}$

3. Compute inertia: m_{i}
4. Invert: $K=\left(\mathbf{F}-\sigma_{1} \mathbf{S}\right)^{-1} \mathbf{S}$

5. Solve: $\mathbf{K} \mathbf{x}_{i}=\frac{1}{\lambda-\sigma_{1}} \mathbf{x}_{i}$
6. Repeat 1-5 if necessary

Parallelization

- Two layers of parallelism based on MPI.
- Horizontal one through slicing. (no communications)
- Vertical one through in slice operations. (heavy communications)

SIPs Implementation

Remember the parallel platform paradox

"The average time required to implement a moderate sized application is equivalent to half-life of the parallel computing platform", John Reynders, 1996.

- Use well-designed mathematical libraries as the building blocks.

Building Blocks

- PETSc: https://www.mcs.anl.gov/petsc/
- Portable, Extensible Toolkit for Scientific Computation
- A suite of data structures and routines for the scalable (parallel) solution of scientific applications modeled by partial differential equations.
- 2009 R\&D Award, 2015 SIAM/ACM prize, 5 Gordon Bell prizes for PETSc applications
- SLEPc: http://slepc.upv.es/
- Scalable Library for Eigenvalue Problem Computations
- Built on top of PETSc

SVD Solver			Polynomial Eigensolver		
Cross Product	Cyclic Matrix	Thick R. Lanczos	TOAR	Linear- ization	Q-Arnoldi

Linear Eigensolver						
Krylov- Schur	Arnoldi	Lanczos	GD	JD	RQCG	CISS

SIPs Implementation in 2007

- Organize subgroups of MPI communicators.
- Select shifts
- Bookkeep and validate eigensolutions
- Balance parallel workload

SIPs Implementation in 2014

- Organize subgroups of MPI communicators.
- Select slices (uniform width)
- Bookkeep eigensolutions
- Use parallel matrix reordering

MPI + BLAS

SIPs Implementation in 2016

- Adjust slices with inertia or eigenvalue information
- Compute density matrix
- SIPs \rightarrow QETSc \rightarrow SIPs \rightarrow SLEPc-SIPs

MPI + BLAS

Benchmark calculations

- Matrices from DFTB gamma point calculations.
- Carbon NanoTube: CNT8000 - CNT512000
- Diamond NanoWire: DNW8000 - DNW128000
- Bulk Diamond Crystal: BDC8000 - BDC64000
- Positions of atoms are randomly deviated from eqb.
- More than 60% of eigenpairs are computed.
- All calculations are done on ALCF supercomputers
- 786,432 IBM BG/Q cores
- 16 cores per node,
- 1 GB RAM per core
- Peak at 10 petaflops
- Interconnect: 5D Torus

Sparsity after factorization

Reordering methods

- Fill-in ratio is the nnz of the factor divided by the nnz of the original matrix.
- Different reordering algorithms give different fill-in ratios.

Type $^{\mathrm{a}}$	RCM	AMD	AMF	METIS	Scotch
CNT8000	7.7	8.0	7.7	$\mathbf{6 . 9}$	$\mathbf{6 . 9}$
CNW8000	5.4	5.7	4.9	$\mathbf{4 . 8}$	$\mathbf{4 . 6}$
BDC8000	11.1	11.2	10.5	$\mathbf{9 . 6}$	$\mathbf{9 . 5}$

- Only METIS and Scotch has parallel implementations: ParMETIS and PT-Scotch.

Parmetis vs PT-Scotch

\qquad

SIPs profile - CNT8000

SIPs profile - CNT8000

Amdahl's law:

$$
t_{n}=t_{1}\left(f+\frac{1-f}{n}\right)
$$

100 sec
90\% parallelized
Max speedup x10

CNT8000

Strong scaling

16 cores per slice up to 250,000 cores

Weak scaling

Self-Consistent Field Method

Two distinct advantages for SCF:
\square Symbolic factorization can be avoided since non-zero structure does not change
\square Load-balance can be improved as the eigenvalues converge

Read Input

Assemble S \&

New Structure

SCF energy and gradient

$$
\mathbf{F}(\mathbf{D}) \mathbf{x}=\lambda \mathbf{S} \mathbf{x} \quad \mathbf{D}=\sum_{i=1}^{n_{\text {oce }}} \omega_{i} \mathbf{x}_{i} \mathbf{x}_{i}^{\mathrm{T}}
$$

SIESTA Integration

""SIESTA is both a method and its computer program implementation, to perform efficient electronic structure calculations and ab initio molecular dynamics simulations of molecules and solids."
Localized numerical basis sets, sparse Hamiltonian, modular code.
PT-Scotch
or ParMETIS

SLEPc

SIESTA-SIPs
PETSc
MPI + BLAS

Load balance and eigenvalue distributions

Load Balance

SIESTA DFT CG relaxation for BN monolayer, converged in 3MD steps.

Benchmark calculations

SIESTA DFT energy and gradient, converged in 13 SCF iterations. LDA for polyethylene, GGA for water clusters with DZP basis sets

384 atoms, 2944 basis functions nnz 7\%

1536 atoms, 11776 basis functions nnz 1.8\%

Conclusions and outlook for SIPs

- Analyzed the performance and modeled the scaling behavior.
- We demonstrated the strong scaling up to 250 k and 500 k basis functions
- A new implementation is available through SLEPc and also available in ELSI.
- Performance is better if you don't have a gap unlike other fast solvers and improves as SCF converges.
- Γ-point only, performance decreases with more multiplicities.
- At the strong scaling limit (1 factorization per slice, up to 40 eigenpairs) should be compatible with PEXSI.
- Next steps:
- Report/fix bug that prevents us use MKL
- Estimate eigenvalue distribution with cheaper methods.
- MKL-Pardiso integration, requires PETSc/MKL
- Collaboration through ALCC, INCITE, ADSP

VALENCE

- Based on valence bond theory and overlapping (nonorthogonal) linear combinations of atomic orbitals (OLCAO)
- Soon to be released.

Graham Fletcher (ANL)
Colleen Bertoni (ANL)
Michael D'Mello (Intel/ANL)

Acknowledgment

Hong Zhang, Peter Zapol, Al Wagner, Âlvaro Vâzquez-Mayagoitia (ANL) Jeff Hammond (Intel)

Work supported by US DOE, Office of Science under Contract No. DE-AC0206CH11357.
Computations are done on Blues, Vesta, Mira, Theta at ANL, Cori at NERSC.

1. Zhang, H., Smith, B., Sternberg, M. \& Zapol, P. SIPs. ACM Trans. Math. Softw. 33, 9 (2007).
2. Campos, C. \& Román, J. E. Numer. Algorithms, 60, 279 (2012).
3. Keçeli M., Zhang, H., Zapol, P., Dixon A.D., \& Wagner A. F., J. Comput. Chem. 37, 448 (2016).
4. Keçeli M., Corsetti F., Campos C., Roman J., Vâzquez-Mayagoitia A, Zhang, H., Zapol, P., \& Wagner A, F. J. Comput. Chem. (2018).

SIPs vs Elemental

Fixed resources 16,384 cores

Fill-ins due to factorizations

- Ordering of the original matrix is crucial to minimize fill-ins

- How can we find the best ordering to minimize fill-ins?
${ }^{-}$Computing the minimum fill-in is NP-complete.
- No deterministic algorithm exists to find it in polynomial time.
- There are a number of heuristic algorithms based on graph theory for approximate solutions.

Reordering matrices

Original

Reordered

SIESTA-SIPs applications

