
Reverse Communication

Interface in ELSI

Yingzhou Li, Jianfeng Lu, and ELSI Team

Duke University

Eigenvalue Problem in KS DFT

𝐻𝜓 = 𝜆𝑆𝜓
• Here 𝐻 is the Hamiltonian matrix, 𝑆 is the overlapping matrix, 𝜆 is a

eigenvalue and 𝜓 is the corresponding eigenvector.

• In Kohn-Sham DFT, smallest 𝑘 eigenpairs are needed.

• In practice, the size of the Hamiltonian matrix is large and 𝑘 is proportional

to the Hamiltonian size.

• Solving the eigenvalue problem is required in each self-consistency

iteration.

ELectronic Structure Infrastructure:

ELSI
• ELSI provides an stable interface

layer between KS-DFT codes and
various solvers (ELPA, libOMM,
PEXSI, SIPs…)

• Matrix format conversion is
performed automatically by ELSI

• ELSI and redistributed solvers
supports five major compilers
(Intel, GNU, IBM, PGI, Cray)

• Reverse Communication Interface for
Iterative Eigensolvers.

– Currently, we have Davidson, OMM and
PPCG implemented.

Davidson Method
• Ψ

• Solve Rayleigh Ritz problem Ψ∗HΨ,Ψ∗Ψ for smallest eigenpairs Λ, 𝑄

• 𝑅 = HΨ𝑄 −ΨQΛ

• If 𝑅 < 𝑡𝑜𝑙, converged

• Approximately solve 𝐻 − Λ𝑖𝐼 𝑉𝑖 = 𝑅𝑖 for all 𝑉𝑖

• Ψ = [Ψ 𝑉]

Orbital Minimization Method
• Solve an unconstrained minimization problem

min
Ψ

tr 2𝐼 − Ψ∗Ψ Ψ∗HΨ

• with conjugate gradient method and exact line search.

• Ψm

• 𝐺𝑚 = 𝒫∇𝑓𝑜𝑏𝑗(Ψ𝑚)

• 𝐷𝑚 = 𝐺𝑚 + 𝛽𝑚𝐺𝑚−1

• Ψ𝑚+1 = Ψ𝑚 + 𝛾𝑚𝐷𝑚

[Corsetti 2014]

Projected Preconditioned CG
• Solve a constrained minimization problem

min
Ψ∗Ψ=𝐼

tr Ψ∗HΨ

• in the subspace of wavefunctions, gradient and conjugate gradient direction.

• Ψ𝑚

• 𝐺𝑚 = 𝒫2 𝐼 − Ψ𝑚Ψ𝑚
∗ 𝐻Ψ𝑚

• Minimize the objective with Ψ𝑚+1 = Ψ𝑚𝐶Ψ + 𝐺𝑚𝐶𝐺 + 𝐷𝑚𝐶𝐷 and 𝐶? is diagonal

• 𝐷𝑚+1 = 𝐺𝑚𝐶𝐺 + 𝐷𝑚𝐶𝐷

• Solve Rayleigh Ritz problem for Ψ𝑚+1 every few iterations

[Vecharynski, et al 2015]

Reverse Communication Interface

RCI
Initialization

Do as the instruction

Initialized

A
n

in

stru
ctio

n

The instruction
is accomplished

Post-calculation

Converged

RCI
Initialization

Do as the instruction
Post-calculation

Zone of Matrices & MPI Zone of Scalars & Sequential

ELSI-RCI’s
responsibility

Reverse Communication Interface

1

2

.

.

11

.

.

21

22

.

.

28

.

.

31

.

Instruction Data Structure
type, public :: rci_instr

character :: jobz, uplo, side ! job char; upper or lower; left or right
character :: trH, trS, trP, trA, trB ! Operation for H, S, P, A, B

integer :: m, n ! size of the output matrix
integer :: k ! size of the intermedia multiplication
integer :: lda, ldb, ldc ! leading size for matrix A, B and C

integer :: rAoff,cAoff ! row and column offset of A
integer :: rBoff,cBoff ! row and column offset of B

integer :: Aidx, Bidx, Cidx ! indices for matrix A, B and C

real(r8) :: alpha, beta ! coefficients

end type

…

Aidx,Bidx,Cidx

…

Initialization
• Allocate memory (RCI)

• Initialize the initial wave functions
– All tests of iterative methods currently use random initial guess

Initialization

Allocation
RCI

Allocate
Matrix

Matrix Index
and Size

Common Instructions
• RCI_NULL

– Null

• RCI_CONVERGE

– Converged Flag

• RCI_STOP

– Stop Flag

• RCI_ALLOCATE

– Allocate a matrix

• RCI_DEALLOCATE

– Deallocate a matrix

• RCI_H_MULTI

– 𝐵 = 𝑜𝑝 𝐻 ∗ 𝐴

• RCI_S_MULTI

– 𝐵 = 𝑜𝑝 𝑆 ∗ 𝐴

• RCI_P_MULTI

– 𝐵 = 𝑜𝑝 𝑃 ∗ 𝐴

Common Instructions
• RCI_COPY

– 𝐵 = 𝑜𝑝(𝐴)

• RCI_SUBCOPY

– 𝐵 𝑟𝐵 + 1:𝑚 , 𝑐𝐵 + 1: 𝑛 =

𝐴(𝑟𝐴 + 1:𝑚 , 𝑐𝐴 + (1: 𝑛))

• RCI_SUBCOL

– 𝐵 = 𝐴(: , 𝑟𝑒𝑠)

• RCI_SUBROW

– 𝐵 = 𝐴(𝑟𝑒𝑠, :)

• RCI_SCALE

– 𝐴 = 𝛼 ∗ 𝐴

• RCI_COLSCALE

– 𝐴 = 𝐴 ∗ diag(𝑟𝑒𝑠)

• RCI_COL_NORM

– 𝑟𝑒𝑠 = diag(𝐴′ ⋅ 𝐴)

• RCI_TRACE

– 𝑟𝑒𝑠 = tr(𝐴)

• RCI_DOT

– 𝑟𝑒𝑠 = tr 𝐴 ∗ 𝐵 = 𝐴 : ′ ∗ 𝐵(:)Locking Technique Requires These Ops

Common Instructions
• RCI_GEMM

– C = 𝛼 ∗ 𝑜𝑝 𝐴 ∗ 𝑜𝑝 𝐵 + 𝛽 ∗ 𝐶

• RCI_AXPY

– 𝐵 = 𝛼 ∗ 𝐴 + 𝐵

• RCI_HEGV

– 𝐴 ∗ 𝐶 = 𝐵 ∗ 𝐶 ∗ diag(𝑟𝑒𝑠)

• RCI_POTRF

– 𝐴 = 𝑈′ ∗ 𝑈 or 𝐴 = 𝐿 ∗ 𝐿′

• RCI_TRSM

– Solve 𝑜𝑝 𝐴 ∗ 𝑋 = 𝛼 ∗ 𝐵 or 𝑋 ∗
𝑜𝑝 𝐴 = 𝛼 ∗ 𝐵 for 𝑋

ijob = RCI_INIT_IJOB
do

call rci_solve(r_h, ijob, iS, task, resvec)
select case (task)
case (RCI_NULL)
case (RCI_STOP)

exit
case (RCI_CONVERGE)

exit
case (RCI_H_MULTI)

call dgemm(iS%TrH, 'N', n, n_state, n, 1.0, H, n, Work(iS%Aidx)%Mat, lda, 0.0, Work(iS%Bidx)%Mat, ldb)
case (RCI_S_MULTI)

call dgemm(iS%TrS, 'N', n, n_state, n, 1.0, S, n, Work(iS%Aidx)%Mat, lda, 0.0, Work(iS%Bidx)%Mat, ldb)
case (RCI_P_MULTI) ! No preconditioner

Work(iS%Bidx)%Mat = Work(iS%Aidx)%Mat
case (RCI_GEMM)

call dgemm(iS%trA, iS%trB, iS%m, iS%n, iS%k, iS%alpha, Work(iS%Aidx)%Mat, iS%lda, Work(iS%Bidx)%Mat, iS%ldb, iS%beta, Work(iS%Cidx)%Mat, iS%ldc)
case (RCI_AXPY)

call daxpy(iS%m*iS%n, iS%alpha, Work(iS%Aidx)%Mat, 1, Work(iS%Bidx)%Mat, 1)
case (RCI_COPY)

Work(iS%Bidx)%Mat = Work(iS%Aidx)%
case (…)

…….
end select

end do

Do As Instructions

Do as the instruction

call rci_omm(r_h, ijob, iS, task, resvec)

call rci_davidson(r_h, ijob, iS, task, resvec)

call rci_ppcg(r_h, ijob, iS, task, resvec)

Post-calculation
• Obtain the converged wave functions and the energy

• Obtain eigenvalues or the density matrix if requested

• Deallocate matrices for the iterative method

Post-calculation

Deallocation
RCI

Deallocate
Matrix

Matrix Index

ELSI-RCI

Target Users

• Discretization methods such that

the Hamiltonian matrix can only be

applied as an operator.

• Discretization methods such that

𝑛𝑏𝑎𝑠𝑖𝑠/𝑛𝑠𝑡𝑎𝑡𝑒 is relatively large.

• Eigenvalue problem beyond DFT,

e.g., BSE eigenvalue problems.

Benefits

• Knowledge of (P)BLAS and

(SCA)LAPACK is sufficient to use

many different iterative

eigensolvers in ELSI_RCI.

• Coding the driver for ELSI_RCI

from an existing iterative

eigensolver is relatively easy.

• One driver runs many iterative

eigensolvers.

Numerical Results
• Silicon 2 ∗ 2 ∗ 2 and 4 ∗ 4 ∗ 4

• Planewave discretization with Ecut

= 20 Hatree

• ONCV pseudo potential

• Hamiltonian operator from a

converged SCF calculation

• Random initial wave functions

Si8 Si64

𝑁𝑏𝑎𝑠𝑖𝑠 74088 571787

𝑁𝑏𝑎𝑠𝑖𝑠
𝑝𝑤 4553 37073

𝑁𝑠𝑡𝑎𝑡𝑒 16 128

• Kerker preconditioner is used

• Convergence criteria 10−7

Numerical Results

Conclusion & Future Work
• ELSI-RCI is a stand alone code without any dependency on other packages

except I/O

• When any of 𝐻, S and 𝑃 is not explicitly available, ELSI-RCI would be the

choice in ELSI

• One time implementation of RCI driver benefits Davidson method, OMM,

PPCG and more eigensolvers in the future

• Implement other iterative eigensolvers

• Reduce the memory usage in the absence of overlapping matrix

ELSI
• ELSI and ELSI-RCI are available on the ELSI Gitlab as a project at

www.elsi-interchange.org

