## Reverse Communication Interface in ELSI

Yingzhou Li, Jianfeng Lu, and ELSI Team Duke University



# **Eigenvalue Problem in KS DFT**

$$H\psi = \lambda S\psi$$

- Here *H* is the Hamiltonian matrix, *S* is the overlapping matrix,  $\lambda$  is a eigenvalue and  $\psi$  is the corresponding eigenvector.
- In Kohn-Sham DFT, smallest k eigenpairs are needed.
- In practice, the size of the Hamiltonian matrix is large and k is proportional to the Hamiltonian size.
- Solving the eigenvalue problem is required in each self-consistency iteration.



#### ELectronic Structure Infrastructure: ELSI

- ELSI provides an stable interface layer between KS-DFT codes and various solvers (ELPA, libOMM, PEXSI, SIPs...)
- Matrix format conversion is performed automatically by ELSI
- ELSI and redistributed solvers supports five major compilers (Intel, GNU, IBM, PGI, Cray)
- Reverse Communication Interface for Iterative Eigensolvers.
  - Currently, we have Davidson, OMM and PPCG implemented.





#### **Davidson Method**

#### • Ψ

- Solve Rayleigh Ritz problem  $(\Psi^* H \Psi, \Psi^* \Psi)$  for smallest eigenpairs  $\Lambda, Q$
- $R = H\Psi Q \Psi Q\Lambda$
- If ||R|| < tol, converged
- Approximately solve  $(H \Lambda_i I)V_i = R_i$  for all  $V_i$
- $\Psi = [\Psi V]$



# **Orbital Minimization Method**

[Corsetti 2014]

- Solve an unconstrained minimization problem  $\min_{\Psi} tr((2I - \Psi^*\Psi)\Psi^*H\Psi)$
- with conjugate gradient method and exact line search.

- Ψ<sub>m</sub>
- $G_m = \mathcal{P} \nabla f_{obj}(\Psi_m)$
- $D_m = G_m + \beta_m G_{m-1}$
- $\Psi_{m+1} = \Psi_m + \gamma_m D_m$



# **Projected Preconditioned CG**

[Vecharynski, et al 2015]

- Solve a constrained minimization problem  $\min_{\Psi^*\Psi=I} tr(\Psi^*H\Psi)$
- in the subspace of wavefunctions, gradient and conjugate gradient direction.

- Ψ<sub>m</sub>
- $G_m = \mathcal{P}2(I \Psi_m \Psi_m^*)H\Psi_m$
- Minimize the objective with  $\Psi_{m+1} = \Psi_m C_{\Psi} + G_m C_G + D_m C_D$  and  $C_2$  is diagonal
- $D_{m+1} = G_m C_G + D_m C_D$

Solve Rayleigh Ritz problem for  $\Psi_{m+1}$  every few iterations

#### **Reverse Communication Interface**



#### **Reverse Communication Interface**



## **Instruction Data Structure**

type, public :: rci\_instr

character :: jobz, uplo, side ! job char; upper or lower; left or right character :: trH, trS, trP, trA, trB ! Operation for H, S, P, A, B

integer :: m, n ! size of the output matrix
integer :: k ! size of the intermedia multiplication
integer :: lda, ldb, ldc ! leading size for matrix A, B and C

integer :: rAoff,cAoff ! row and column offset of A integer :: rBoff,cBoff ! row and column offset of B

integer :: Aidx, Bidx, Cidx ! indices for matrix A, B and C

real(r8) :: alpha, beta ! coefficients

end type





## Initialization

Allocate memory (RCI)



Initialization

- Initialize the initial wave functions
  - All tests of iterative methods currently use random initial guess



## **Common Instructions**

- RCI\_NULL
  - Null
- RCI\_CONVERGE
  - Converged Flag
- RCI\_STOP
  - Stop Flag
- RCI\_ALLOCATE
  - Allocate a matrix
- RCI\_DEALLOCATE
  - Deallocate a matrix

- RCI\_H\_MULTI
  - B = op(H) \* A
- RCI\_S\_MULTI - B = op(S) \* A
- RCI\_P\_MULTI - B = op(P) \* A



## **Common Instructions**

- RCI\_COPY
  - B = op(A)
- RCI\_SUBCOPY
  - $B(r_B + (1:m), c_B + (1:n)) = A(r_A + (1:m), c_A + (1:n))$
- RCI\_SUBCOL
  - B = A(:, res)
- RCI\_SUBROW
  - B = A(res,:)

Locking Technique Requires These Ops

- RCI\_SCALE
  - $-A = \alpha * A$
- RCI\_COLSCALE
   A = A \* diag(res)
- RCI\_COL\_NORM -  $res = \sqrt{\operatorname{diag}(A' \cdot A)}$
- RCI\_TRACE
  - res = tr(A)
- RCI\_DOT
  - res = tr(A \* B) = A(:)' \* B(:)

## **Common Instructions**

- RCI\_GEMM
  - $C = \alpha * op(A) * op(B) + \beta * C$
- RCI\_AXPY
  - $B = \alpha * A + B$

- RCI\_HEGV
  - A \* C = B \* C \* diag(res)
- RCI\_POTRF
  - A = U' \* U or A = L \* L'
- RCI\_TRSM
  - Solve  $op(A) * X = \alpha * B$  or  $X * op(A) = \alpha * B$  for X



## **Do As Instructions**

ijob = RCI\_INIT\_IJOB

call rci\_solve(r\_h, ijob, iS, task, resvec)

select case (task)

case (RCI\_NULL)

case (RCI\_STOP)

exit

do

case (RCI CONVERGE)

exit

case (RCI\_H\_MULTI)

call dgemm(iS%TrH, 'N', n, n\_state, n, 1.0, H, n, Work(iS%Aidx)%Mat, Ida, 0.0, Work(iS%Bidx)%Mat, Idb)

case (RCI\_S\_MULTI)

call dgemm(iS%TrS, 'N', n, n\_state, n, 1.0, S, n, Work(iS%Aidx)%Mat, Ida, 0.0, Work(iS%Bidx)%Mat, Idb)

case (RCI\_P\_MULTI) ! No preconditioner

Work(iS%Bidx)%Mat = Work(iS%Aidx)%Mat

case (RCI\_GEMM)

call dgemm(iS%trA, iS%trB, iS%m, iS%n, iS%k, iS%alpha, Work(iS%Aidx)%Mat, iS%lda, Work(iS%Bidx)%Mat, iS%ldb, iS%beta, Work(iS%Cidx)%Mat, iS%ldc) case (RCI\_AXPY)

```
call daxpy(iS%m*iS%n, iS%alpha, Work(iS%Aidx)%Mat, 1, Work(iS%Bidx)%Mat, 1)
```

case (RCI\_COPY)

Work(iS%Bidx)%Mat = Work(iS%Aidx)%

case (...)

end select end do

#### Do as the instruction



call rci\_omm(r\_h, ijob, iS, task, resvec)

call rci\_davidson(r\_h, ijob, iS, task, resvec)

call rci\_ppcg(r\_h, ijob, iS, task, resvec)

#### **Post-calculation**

- Obtain the converged wave functions and the energy
- Obtain eigenvalues or the density matrix if requested
- Deallocate matrices for the iterative method





# **ELSI-RCI**

#### **Target Users**

- Discretization methods such that the Hamiltonian matrix can only be applied as an operator.
- Discretization methods such that  $n_{basis}/n_{state}$  is relatively large.
- Eigenvalue problem beyond DFT, e.g., BSE eigenvalue problems.

#### **Benefits**

- Knowledge of (P)BLAS and (SCA)LAPACK is sufficient to use many different iterative eigensolvers in ELSI\_RCI.
- Coding the driver for ELSI\_RCI from an existing iterative eigensolver is relatively easy.
- One driver runs many iterative eigensolvers.



# **Numerical Results**

- Silicon 2 \* 2 \* 2 and 4 \* 4 \* 4
- Planewave discretization with Ecut
   = 20 Hatree
- ONCV pseudo potential
- Hamiltonian operator from a converged SCF calculation
- Random initial wave functions

- Kerker preconditioner is used
- Convergence criteria  $10^{-7}$

|                          | Si8   | Si64   |
|--------------------------|-------|--------|
| N <sub>basis</sub>       | 74088 | 571787 |
| N <sup>pw</sup><br>basis | 4553  | 37073  |
| N <sub>state</sub>       | 16    | 128    |



#### **Numerical Results**





# **Conclusion & Future Work**

- ELSI-RCI is a stand alone code without any dependency on other packages except I/O
- When any of *H*, S and *P* is not explicitly available, ELSI-RCI would be the choice in ELSI
- One time implementation of RCI driver benefits Davidson method, OMM, PPCG and more eigensolvers in the future

- Implement other iterative eigensolvers
- Reduce the memory usage in the absence of overlapping matrix



#### ELSI

• ELSI and ELSI-RCI are available on the ELSI Gitlab as a project at

#### www.elsi-interchange.org



