MoISSI Workshop / ELSI Conference

Eigenvalue Solvers Considerations on Modern HPC Hardware Platforms

Piotr Luszczek

In collaboration with: *Mark Gates, Azzam Haidar, Jakub Kurzak, Hatem Ltaief, Stanimire Tomov, and Jack Dongarra* August 16, 2018

Software Projects – Multicores and Accelerators

Basic Linear Algebra Subroutines

С

- Level 1 BLAS vector ops
 - O(n) data and flops
 - Memory bound:
 - As high as 2 Gflop/s on Skylake (not per core)
- Level 2 BLAS mat-vec ops
 - O(n²) data and flops
 - Memory bound:
 - As high as 4 Gflop/s on Skylake (not per core)
- Level 3 BLAS mat-mat ops
 - O(n²) data, O(n³) flops
 - Surface-to-volume effect
 - Compute bound:
 - As high as 80 Gflop/s per core on Skylake

Floating Point Operations Per-Cycle Per-Core

- Most of the recent computers have FMA (Fused multiple add):
 - $x \leftarrow x + y^*z$ in one cycle without intermediate rounding
- Intel Xeon (earlier models) and AMD Opteron have SSE2
 - 2 flops/cycle DP, 4 flops/cycle SP
- Intel Xeon Nehalem ('09) & Westmere ('10) have SSE4
 4 flops/cycle DP, 8 flops/cycle SP
- Intel Xeon Sandy Bridge('11) and Ivy Bridge ('12) have AVX
 - 8 flops/cycle DP & 16 flops/cycle SP
- Intel Xeon Haswell ('13) & Broadwell ('14) AVX2
 - 16 flops/cycle DP & 32 flops/cycle SP
- Xeon Phi (per core) is at 16 flops/cycle DP & 32 flops/cycle SP
- Intel Xeon Skylake ('18, server) and Knight's Landing AVX 512
 - 32 flops/cycle DP & 64 flops/cycle SP

CPU Access Latency in Clock Cycles

MAGMA Portability Overview

GPU

CENTER OF

NVIDIA's GPU Center of **Excellence Program recognizes** universities expanding the frontier of massively parallel computing using CUDA. EXCELLENCE

Intel Parallel **Computing Center**

The objective of the Innovative Computing Laboratory's IPCC is the development and optimization of numerical linear algebra libraries and technologies for applications, while tackling current challenges in heterogeneous Intel® Xeon Phi™ coprocessor-based High Performance Computing.

Long-term collaboration and support on the development of cIMAGMA, the OpenCL[™] port of MAGMA.

MAGMA Performance – LU Factorization

MAGMA Performance on NVIDIA Volta

PERFORMANCE & ENERGY EFFICIENCY

MAGMA LU factorization in double precision arithmetic

MAGMA's DGETRF Performance on Kepler K20c

MAGMA's DGETRF Performance on Phi KNC

MAGMA Batched Performance

\ \

ROUTINES

LU, QR, and Cholesky Solvers and matrix inversion All BLAS 3 (fixed + var) SYMV, GEMV (fixed + var)

PERFORMANCE OF BATCHED LU

in double precision arithmetic on 1 million matrices

MAGMA Algorithmic Overview

- dense linear algebra for accelerators
 - NVIDIA using CUDA
 - AMD using OpenCL
 - Intel Xeon Phi
- hybrid, CPU-GPU implementations
 - single-GPU
 - multi-GPU
 - OO-GPU-memory
- managing data transfers
- some batched routines
- some sparse solvers

Recent Eigenvalue and SVD Algorithms

New (multicore libraries, ELPA)

Recent Eigenvalue, SVD Algorithms: 1st Stage

New (multicore libraries)

Recent Eigenvalue, SVD Algorithms: 2nd Stage

New (multicore libraries)

Multicore Performance Results

2x8 core Intel Xeon E5-2670 (Sandy Bridge) @ 2.6 GHz

Distributed Memory Performance

1764 Broadwell cores (49*36)

Low-precision Considerations

1.88 Exa-Ops on Summit

- Algorithm packaged in the comparative genomics application Combinatorial Metrics (CoMet)
 - Custom Correlation Coefficient method, specializes in comparing variations of the same genes (alleles) present in a given population
 - Analyzes datasets composed of millions of genomes (previously impossible)
 - Study variations between all possible combinations of two or three alleles at a time.
 - Uncovers hidden networks of genes in plants and animals that contribute to observable traits
 - Biomarkers for drought-resistance in plants or disease in humans
- Principal investigators
 - Daniel Jacobson (Computational Biologist) and
 - Wayne Joubert (computational scientist)

Floating Point Formats from IEEE 754 (2008)

Precision	Width	Exponent bits	Mantissa bits	Epsilon	Max
Quadruple	128	15	112	O(10 ⁻³⁴)	1.2x10 ⁴⁹³²
Extended	80	15	64	O(10 ⁻¹⁹)	
Double	64	11	52	O(10 ⁻¹⁶)	1.8x10 ³⁰⁸
Single	32	8	23	O(10 ⁻⁷)	3.4x10 ³⁸
Half*	16	5	10	O(10 ⁻³)	65504

*Only storage format is specified. IEEE 2018 covers the compute rules.

Best Performers for FP16, FP32, FP64 (Pascal)

Convergence Results: All Precisions

