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Motivation
Graphene

We have been able to prepare graphitic

sheets of thicknesses down to a few atomic

layers (including single-layer graphene), to

fabricate devices from them, and to study

their electronic properties. Despite being

atomically thin, the films remain of high

quality, so that 2D electronic transport is

ballistic at submicrometer distances. No

other film of similar thickness is known to

be even poorly metallic or continuous under

ambient conditions. Using FLG, we demon-

strate a metallic field-effect transistor in

which the conducting channel can be

switched between 2D electron and hole gases

by changing the gate voltage.

Our graphene films were prepared by

mechanical exfoliation (repeated peeling) of

small mesas of highly oriented pyrolytic

graphite (15). This approach was found to

be highly reliable and allowed us to prepare

FLG films up to 10 6m in size. Thicker films

(d Q 3 nm) were up to 100 6m across and

visible by the naked eye. Figure 1 shows

examples of the prepared films, including

single-layer graphene Esee also (15)^. To

study their electronic properties, we pro-

cessed the films into multiterminal Hall bar

devices placed on top of an oxidized Si

substrate so that a gate voltage V
g

could be

applied. We have studied more than 60

devices with d G 10 nm. We focus on the

electronic properties of our thinnest (FLG)

devices, which contained just one, two, or

three atomic layers (15). All FLG devices

exhibited essentially identical electronic

properties characteristic for a 2D semimetal,

which differed from a more complex (2D

plus 3D) behavior observed for thicker,

multilayer graphene (15) as well as from

the properties of 3D graphite.

In FLG, the typical dependence of its sheet

resistivity D on gate voltage V
g

(Fig. 2)

exhibits a sharp peak to a value of several

kilohms and decays to È100 ohms at high V
g

(note that 2D resistivity is given in units of

ohms rather than ohms � cm as in the 3D

case). Its conductivity G 0 1/D increases

linearly with V
g

on both sides of the resistivity

peak (Fig. 2B). At the same V
g

where D has its

peak, the Hall coefficient R
H

exhibits a sharp

reversal of its sign (Fig. 2C). The observed

behavior resembles the ambipolar field effect

in semiconductors, but there is no zero-

conductance region associated with the Fermi

level being pinned inside the band gap.

Our measurements can be explained

quantitatively by a model of a 2D metal

with a small overlap &( between conductance

and valence bands (15). The gate voltage

induces a surface charge density n 0 (
0
(V

g
/te

and, accordingly, shifts the position of the

Fermi energy (
F
. Here, (

0
and ( are the

permittivities of free space and SiO
2
, respec-

tively; e is the electron charge; and t is the

thickness of our SiO
2

layer (300 nm). For

typical V
g
0 100 V, the formula yields n ,

7.2 � 1012 cmj2. The electric field doping

transforms the shallow-overlap semimetal

into either completely electron or completely

hole conductor through a mixed state where

both electrons and holes are present (Fig. 2).

The three regions of electric field doping are

clearly seen on both experimental and

theoretical curves. For the regions with only

electrons or holes left, R
H

decreases with

increasing carrier concentration in the usual

way, as 1/ne. The resistivity also follows the

standard dependence Dj1 0 G 0 ne6 (where

6 is carrier mobility). In the mixed state, G

changes little with V
g
, indicating the substi-

tution of one type of carrier with another,

while the Hall coefficient reverses its sign,

reflecting the fact that R
H

is proportional to

Fig. 1. Graphene films. (A) Photograph (in normal white light) of a relatively large multilayer
graphene flake with thickness È3 nm on top of an oxidized Si wafer. (B) Atomic force microscope
(AFM) image of 2 6m by 2 6m area of this flake near its edge. Colors: dark brown, SiO2 surface;
orange, 3 nm height above the SiO2 surface. (C) AFM image of single-layer graphene. Colors: dark
brown, SiO2 surface; brown-red (central area), 0.8 nm height; yellow-brown (bottom left), 1.2 nm;
orange (top left), 2.5 nm. Notice the folded part of the film near the bottom, which exhibits a
differential height of È0.4 nm. For details of AFM imaging of single-layer graphene, see (15). (D)
Scanning electron microscope image of one of our experimental devices prepared from FLG. (E)
Schematic view of the device in (D).

Fig. 2. Field effect in FLG. (A) Typical
dependences of FLG’s resistivity D on
gate voltage for different temperatures
(T 0 5, 70, and 300 K for top to bottom
curves, respectively). (B) Example of
changes in the film’s conductivity G 0
1/D(Vg) obtained by inverting the 70 K
curve (dots). (C) Hall coefficient RH
versus Vg for the same film; T 0 5 K. (D)
Temperature dependence of carrier
concentration n0 in the mixed state
for the film in (A) (open circles), a
thicker FLG film (squares), and multi-
layer graphene (d , 5 nm; solid circles).
Red curves in (B) to (D) are the
dependences calculated from our mod-
el of a 2D semimetal illustrated by
insets in (C).0
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Larger and larger devices

Multiple electrodes

Non-equilibrium effects

Williams et.al.: 10.1126/science.1144657, Merchant et.al.: 10.1021/nl101046t
Novoselov et.al.: 10.1126/science.1102896
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Non-equilibrium Green function
Basic equations — and problems herein

Equations for calculating the density matrix

G(z) =
[
zS−H−

∑
e

Σe(z −µe)
]−1

, with z ≡ ε+ iη

Γ e(z) = i
(
Σe(z −µe)−Σ†e(z −µe)

)

ρ(z) ∼ −
∫

[G(z)−G†(z)]nF,e +
∫

G(z)Γ e′ (z)G†(z)[nF,e′ −nF,e]

Sparse elements

Sparse inversion techniques, MUMPS, PEXSI, . . .
Sparsity depends on basis set

Dense column matrix multiplications

Sparse inversion techniques are less optimal
Dense matrix operations may be more efficient→ Block-Tri-Diagonal (BTD)

Papior et.al.: 10.1016/j.cpc.2016.09.022
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Inversion — Block-Tri-Diagonal
Green function

Utilise sparsity of Hamiltonian
Reduce complexity using zeroes

Same as the recursive Green function algorithm

G−1 =



A1 C2 0 · · ·
B1 A2 C3 0 · · ·

0 B2
. . .

. . . 0
... 0

. . .
. . . Cp

... 0 Bp−1 Ap



Ỹn = [An−1 −Yn−1]−1Cn ,Y1 = 0

Yn = Bn−1Ỹn
X̃n = [An+1 −Xn+1]−1Bn ,Xp = 0

Xn = Cn+1X̃n
Gn,n = [An −Xn −Yn]−1

Gm−1,n = −ỸmGm,n ,m ≤ n
Gm+1,n = −X̃mGm,n ,m ≥ n

A0 A0 A1 A2 A3 A4 A4

C1 C1 C4 C4C2 C3

B0 B0 B3 B3B1 B2

Y2 = Σ
(
A0 A1

)
Y1 = Σ

(
A0

)
= Σ1

Y3 = Σ
(
A0 A1 A2

)
X2 = Σ

(
A3 A4

)

X3 = Σ
(
A4

)
= Σ2

X1 = Σ
(
A2 A3 A4

)

Reuter et.al.: 10.1088/1749-4699/5/1/014009
Papior et.al.: 10.1016/j.cpc.2016.09.022
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Enforcing BTD — going quasi 1D
Pivoting matrix elements, order from dis-order

2,400 atoms

21,600 orbitals

?
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Speedup and scalability

Memory and time for varying
system sizes (3D bulk):
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Brandbyge et.al.: 10.1103/PhysRevB.65.165401

Papior et.al.: 10.1016/j.cpc.2016.09.022
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Currently known investigated systems

∼ 2000 atoms

∼ 3000 atoms

∼ 5000 atoms

Brandimarte et.al.: 10.1063/1.4974895, Obesteiner et.al.: 10.1021/acs.nanolett.7b03066
Brandimarte et.al.: under review
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Optimizing the integration
Energy contour

Integration in the complex plane for the equilibrium contour G−G†

Gaussian quadrature have more points close to the integration boundaries

R+ =
T

G(z)

E

=

EF

L+

C+

R+ zi

R− = −
T
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Optimizing the integration
k-points on

Bias window calculation GΓG†

Only states close to the reference energy are important!
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DFT coupled to tight-binding – graphene
DFT→ TB

Current problems involve a model-tip
coupling via Γ

For complex chemical defects and/or
complex electrode attachments,
tight-binding is not accurate enough

Gaetano Calogero

1 Calculate the self-energy from the
tip-electrode region

2 Propagate the self-energy onto the red
atoms

3 Cut the self-energies to the parameterized
orbitals

sisl: 10.5281/zenodo.597181

14/18
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DFT coupled to tight-binding – graphene
DFT→ TB

DFT
Two DFT calculations are carried out:

1 Pristine graphene calculation from which TB
parameters are extracted.

2 Calculation of a defected region surrounded
by pristine (in every sense) graphene. The
pristine graphene region must be big
enough to screen the “defected” region.

Tight-binding
From pristine DFT calculation extract the
non-orthogonal parameters up to a
user-specified range. These parameters are used
to construct a non-orthogonal tight-binding
model of pristine graphene to a user-defined size.
Next, any region of the system may be replaced
by the self-energy describing local defects.

Selecting the parameters is done using the
orbitals that have all the weight in the
energy range specified.

s Hs Ss

px Hpx Spx

py Hpy Spy

pz Hpz Spz

It is crude, but it works!

sisl: 10.5281/zenodo.597181
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DFT coupled to tight-binding – graphene
Gold STM tip

Injection into infinite graphene using an Au-tip structure

E = −0.8eV E = 0.8eV

sisl: 10.5281/zenodo.597181
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DFT coupled to tight-binding – graphene
Standardized method

More than one region of defects

Two-tip structure by inserting the same tip in two different places. Bond-currents from the left tip
are seen.

sisl: 10.5281/zenodo.597181

17/18

https://dx.doi.org/10.5281/zenodo.597181


Co-workers and collaborators

Funding:

Mads Brandbyge, DTU

Gaetano Calogero, DTU

Alberto Garcia, ICMAB

Thomas Frederiksen, DIPC

Pablo Ordejón, ICN2
Workshop 20–23 Nov:

TranSiesta + TBtrans + sisl
nickpapior@gmail.com

18/18


	Motivation
	Non-equilibrium Green functions (TranSiesta)
	Block-Tri-Diagonal inversion
	Why pivoting matters?
	Scalability
	Optimizing the integration

	DFT coupled to tight-binding – graphene
	DFT -> TB


