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Motivation for analyzing equilibration

Recommender systems and language models often involve low-rank
approximations of a large, sparse matrix A, e.g., a local minimum of:

L(X ,Y ) =
1

2
‖W ◦ (A− XY ∗)‖2F +

λ

2

(
‖X‖2F + ‖Y ‖2F

)
,

where W is a weighting matrix (often a function of A).1

This is Maximum Likelihood inference with (XY ∗)i,j ∼ N (Ai,j ,W
−2
i,j ) and

priors Xi,j ,Yi,j ∼ N (0, 1/λ).2

One can find an approximate local minimum via a few iterations of Weighted
Alternating Least Squares.3

A colleague (Steffen Rendle) observed that results for his model satisfied

X ∗X = Y ∗Y . How do we prove (and exploit) this property?

1See, for example, [Hu et al.-2008] Collaborative filtering for implicit
feedback datasets

2Cf. [Srebro/Jaakkola-2003] Weighted low-rank approximations
3http://www.tensorflow.org/api_docs/python/tf/contrib/

factorization/WALSModel
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Why the Gramians are equivalent [1/3]

Definition 1. Given S ∈ Sym(n,R), we will use the shorthand P(S) for the
linear operator P(S) : Sym(n,R)→ Sym(n,R) via P(S)A = SAS .

Definition 2. The geometric mean of A,B ∈ Sn
++ is

A ]B = B ]A = P(A1/2)(P(A−1/2)B)1/2.

Proposition 1. For any A,B ∈ Sn
++, there is a unique S ∈ Sn

++ such that
P(S)A = B.4

Proof. For existence, put S = A−1 ]B.
For uniqueness, if P(S)A = P(T )A, then X ∗AX = A, with X = T−1S . Then
the spectral decomposition (S1/2T−1S1/2)(S1/2Z) = (S1/2Z)Λ implies
XZ = ZΛ, Λ � 0. And Z∗AZ = Z∗(X ∗AX )Z = ΛZ∗AZΛ, so Λ = I and
T = S .

Definition 3. The Nesterov-Todd scaling point of A,B ∈ Sn
++ is

P(S1/2)A = P(S−1/2)B, where S = A−1 ]B.5

4[Anderson/Trapp-1980] Operator means and electrical networks, Cf.
[Bhatia-2007] Positive Definite Matrices

5[Nesterov/Todd-1998] Primal-Dual Interior Point Methods for self-scaled
cones
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Why the Gramians are equivalent [2/3]

Lemma 4 (P.). Given (X ,Y ) ∈ Rm×r × Rn×r , S ∈ Sn
++ minimizes

f : Sn
++ → R+, where

f (S) = ‖XS‖2F + ‖YS−1‖2F ,

iff P(S)(X ∗X ) = P(S−1)(Y ∗Y ). And, if X and Y have full column rank, then
S = ((X ∗X )−1 ] (Y ∗Y ))1/2 is the unique minimizer.
Proof. Decompose f as g ◦ h, where h : Sn

++ → Sn
++ via h(S) = S2 and

g : Sn
++ → R+ via g(T ) = 〈X ∗X ,T 〉+ 〈Y ∗Y ,T−1〉.

Then h is a diffeomorphism and dgT : (TTS
n
++
∼= Sym(n,R))→ (Tg(T )R ∼= R)

via dgT (dT ) = 〈X ∗X − T−1Y ∗YT−1, dT 〉.

So S ∈ Sn
++ is a critical point of f iff dfS = dgS2 ◦ dhS = 0 iff

X ∗X − S−2Y ∗YS−2 = 0.

5 / 20
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Why the Gramians are equivalent [3/3]

Theorem 5 (P.). If ` : Rm×n → R is continuous, the local minima of
L : Rm×r × Rn×r → R, where

L(X ,Y ) = `(XY ∗) +
λ

2

(
‖X‖2F + ‖Y ‖2F

)
,

satisfy X ∗X = Y ∗Y . And, given any candidate (X ,Y ), the equilibration,
(XS1/2,YS−1/2), where S = (X ∗X )−1 ] (Y ∗Y ), minimizes the regularization
while preserving the input to `.
Proof. Given (X ,Y ), `(XY ∗) is invariant under any transformation
(X ,Y ) 7→ (XZ ,YZ−∗) where Z ∈ GL(n,R).
Thus, any local minimum must satisfy

‖X‖2F + ‖Y ‖2F = min
Z∈GL(n,R)

{‖XZ‖2F + ‖YZ−∗‖2F}

= min
S∈Sn

++

{‖XS‖2F + ‖YS−1‖2F},

where we exploited the polar decomposition Z = SQ, Q unitary. The result

then follows from our lemma.
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Equilibrating block coordinate descent

Given

L(X ,Y ) = `(XY ∗) +
λ

2

(
‖X‖2F + ‖Y ‖2F

)
,

insert an equilibration step between each block coordinate descent step. E.g., if
X and Y have full column rank, replace

(X ,Y ) 7→ (XS1/2,YS−1/2), S = (X ∗X )−1 ] (Y ∗Y ),

which can be computed in O((m + n + r)r 2) time.

Equilibration is essentially free and keeps the regularization minimized (with the
constraint of preserving the loss function input).

If one thinks of (X ∗X ,Y ∗Y ) as analogous to a primal/dual pair in an SDP
IPM, this is similar to centering the Newton step about the NT point.

Equilibration has a much more pronounced effect for small regularization

values.

7 / 20



Equilibrating block coordinate descent

Given

L(X ,Y ) = `(XY ∗) +
λ

2

(
‖X‖2F + ‖Y ‖2F

)
,

insert an equilibration step between each block coordinate descent step. E.g., if
X and Y have full column rank, replace

(X ,Y ) 7→ (XS1/2,YS−1/2), S = (X ∗X )−1 ] (Y ∗Y ),

which can be computed in O((m + n + r)r 2) time.

Equilibration is essentially free and keeps the regularization minimized (with the
constraint of preserving the loss function input).

If one thinks of (X ∗X ,Y ∗Y ) as analogous to a primal/dual pair in an SDP
IPM, this is similar to centering the Newton step about the NT point.

Equilibration has a much more pronounced effect for small regularization

values.

7 / 20



Equilibrating block coordinate descent

Given

L(X ,Y ) = `(XY ∗) +
λ

2

(
‖X‖2F + ‖Y ‖2F

)
,

insert an equilibration step between each block coordinate descent step. E.g., if
X and Y have full column rank, replace

(X ,Y ) 7→ (XS1/2,YS−1/2), S = (X ∗X )−1 ] (Y ∗Y ),

which can be computed in O((m + n + r)r 2) time.

Equilibration is essentially free and keeps the regularization minimized (with the
constraint of preserving the loss function input).

If one thinks of (X ∗X ,Y ∗Y ) as analogous to a primal/dual pair in an SDP
IPM, this is similar to centering the Newton step about the NT point.

Equilibration has a much more pronounced effect for small regularization

values.

7 / 20



Equilibrating block coordinate descent

Given

L(X ,Y ) = `(XY ∗) +
λ

2

(
‖X‖2F + ‖Y ‖2F

)
,

insert an equilibration step between each block coordinate descent step. E.g., if
X and Y have full column rank, replace

(X ,Y ) 7→ (XS1/2,YS−1/2), S = (X ∗X )−1 ] (Y ∗Y ),

which can be computed in O((m + n + r)r 2) time.

Equilibration is essentially free and keeps the regularization minimized (with the
constraint of preserving the loss function input).

If one thinks of (X ∗X ,Y ∗Y ) as analogous to a primal/dual pair in an SDP
IPM, this is similar to centering the Newton step about the NT point.

Equilibration has a much more pronounced effect for small regularization

values.

7 / 20



A trivial example

Consider minimizing (α− χη)2 + λ(χ2 + η2) given α = 1,
λ = 0.001, χ0 = η0 = 2.

0 2 4 6 8 10

−6

−4

−2

0

2

iteration

lo
g
-l
o
ss

Unequilibrated
Equilibrated
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Handling ill-conditioned Gramians [1/2]
The Nesterov-Todd equilibration obviously makes assumptions about the
invertibility of the Gramians.

Geometrically, S = A ]B, when A,B ∈ Sn
++, is well-known to be the Euclidean

midpoint between log(A) and log(B) and the midpoint of the geodesic between
A and B when Sn

++ is equipped with the left-invariant metric
gX (S ,T ) = 〈X−1S ,X−1T 〉.

One could extend the geometric mean to the boundary via:
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Handling ill-conditioned Gramians [2/2]

We thus saw that the extension:

A ]B = lim
ε↓0

(A + εI ) ] (B + εI )

can lead to singular geometric means (in addition to being discontinuous).

But if we only care about backwards stability, then there is no issue. One can

compute S = X̂ ∗X
−1
] Ŷ ∗Y , where Ẑ = Z + α‖Z‖F for some α� 1,

equilibrate with S , and perhaps repeat.

This extends the applicability from Sn
++ to Sn

+ \ {0}.
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Another toy example
Consider minimizing ‖A− XY ∗‖2F + λ(‖X‖2F + ‖Y ‖2F ), given
A = randn(200, 400), λ = 0.1, X0 = randn(200, 10),
Y0 = [randn(400, 9), zeros(400, 1)].
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iteration
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Jordan-algebraic interpretations

Recall our definition P(S) : Sym(n,R)→ Sym(n,R) via P(S)A = SAS .

This is a special case of the quadratic representation of a Jordan algebra V ,
where P(x) = 2L(x)2 − L(x2) and L(x) : V → V is left application of x ∈ V .6

For V = Sym(n,R) with Jordan product A ◦B ≡ 1
2
(AB +BA), L(A)B ≡ A ◦B:

P(A)B = 2(A ◦ (A ◦ B))− A2 ◦ B = ABA.

The 1-to-1 correspondence between symmetric cones and squares of Euclidean
Jordan algebras [Faraut/Koranyi-1998] is commonly exploited in Interior Point
Methods (especially for Lorentz cones).7

One can easily build on Prop’n 1 to show: given A,B ∈ int(V 2), there is a

unique S ∈ int(V 2) such that P(S)A = B.8 The definitions of geometric

means and Nesterov-Todd scaling points carry over through usage of P.

6[Faraut/Koranyi-1998] Analysis on Symmetric Cones.
7[Faybusovich-1997] Euclidean Jordan Algebras and Interior-point Alg’s
8[Lim-2000] Geometric means on symmetric cones
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Determinantal Point Processes

Definition 6. A marginal kernel matrix is a (real or complex) Hermitian
matrix whose eigenvalues live in [0, 1].

Definition 7. A (finite) Determinantal Point Process (DPP) is a random
variable Y over the power set of Y = {1, ..., k} ⊂ N generated by a k × k
marginal kernel matrix K via the rule

PK [Y ⊆ Y] = det(KY ),

where KY is the |Y | × |Y | submatrix of K formed by restricting to the rows
and columns in the index set Y .

Definition 8. A DPP is called elementary if the eigenvalues of its marginal

kernel matrix are all either 0 or 1.
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How to sample a DPP?

Traditional algorithms [Hough et al.-2006] used an eigendecomposition of the
kernel matrix and transformed the eigenvalues their Bernoulli draw to reduce to
an elementary DPP (which was then sampled with a quartic algorithm).9

[Gillenwater-2014] reduced the factored elementary DPP sampling down to
cubic complexity via what is equivalent to diagonally-pivoted Cholesky.10

Recently, authors are noticing the connections to Cholesky factorization for
MAP inference and directly sampling from the marginal kernel. 11

I will give a simple proof of a cubic Cholesky-like algorithm for directly sampling

from a marginal kernel and provide a high-performance blocked equivalent.

9[Hough et al.-2006] Determinantal point processes and independence, Cf.
[Kulesza/Taskar-2012] Determinantal point processes for machine learning.

10[Gillenwater-2014] Approximate inference for determinantal point processes
11[Chen et al.-2017] Fast Greedy MAP inference for Determinantal Point

Processes, [Launay et al.-2018] Exact sampling of determinantal point
processes without eigendecomposition
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Complementary DPPs

Lemma 9 (Hough et al-2006). Given any Y ∼ DPP(K), where K has
spectral decomposition QΛQ∗, sampling from Y is equivalent to sampling from
the random elementary DPP with kernel P(QZ), where P(U) ≡ UU∗ and QZ

consists of the columns of Q with indices from Z ∼ DPP(Λ).

Lemma 10. Given any Y ∼ DPP(K), Yc ∼ DPP(I − K) (which we call the
complementary DPP). Proof. The case where K is elementary is proven in
[Tao-2009] via showing that the squared determinants of the diagonal blocks of
a 2x2 partition of an orthonormal matrix are equal.12

In the general case, if K has spectral decomposition QΛQ∗, then I − K has
spectral decomposition Q(I − Λ)Q∗. And the probability of drawing J from
DPP(Λ) is equal to that of drawing Jc from DPP(I − Λ).

The result for the elementary case then shows that, if Z ∼ DPP(QJQ
∗
J ), then

Zc ∼ DPP(I − QJQ
∗
J ) = DPP(QJcQ

∗
Jc ). The general case then follows from

Lemma 9.

12[Tao-2009]
terrytao.wordpress.com/2009/08/23/determinantal-processes/
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Conditioning and Schur complements

Proposition 2. Given disjoint subsets A,B ⊂ Y,

P[B ⊆ Y|A ⊆ Y] = det(KB − KB,AK
−1
A KA,B),

P[B ⊆ Y|A ⊆ Yc ] = det(KB + KB,A(I − KA)−1KA,B).

Proof. The first claim follows from

det(KA∪B) = det(KA)det(KB − KB,AK
−1
A KA,B)

and

P[B ⊆ Y|A ⊆ Y] =
det(KA∪B)

det(KA)
.

The second claim follows from applying the first result to the complementary
DPP to find

P[B ⊆ Yc |A ⊆ Yc ] = det((I − K)B − KB,A(I − K)−1
A KA,B).

Taking the complement of said Schur complement shows the second result.
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Sampling w/ mirror-image Cholesky

samples = {}

for j=1:n

J2 = [j+1:n]

keep_index = Bernoulli(K(j,j))

if keep_index

scale = -1; samples.insert(j)

K(j,j) = sqrt(K(j,j))

else

scale = +1

K(j,j) = sqrt(1-K(j,j))

K(J2 ,j) /= K(j,j)

K(J2 ,J2) += scale*tril(K(J2 ,j)*K(J2 ,j)’)

This is a small tweak of unblocked Cholesky factorization; the majority of the

work is in Hermitian rank-1 updates. And the standard Cholesky optimizations

apply (e.g., blocking and sparse-direct factorization)!
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Blocked mirror-image sampling
samples = {}

J1_beg = 1

while J1_beg <= n

J1_end = min(n, J1_beg+blocksize -1)

J1 = [J1_beg:J1_end ]; J2 = [J1_end +1:n]

J1_samples , K(J1 ,J1) = sample(K(J1 ,J1))

A21 = zeros(len(J2), len(J1_samples ))

B21 = zeros(len(J2), len(J1)-len(J1_samples ))

num_keep_packed = num_drop_packed = 0

for k in J1

K(J2,k) /= K(k,k)

if (k-J1_beg +1) in J1_samples

A21(:, num_keep_packed ++) = K(J2 ,k); scale = -1

else

B21(:, num_drop_packed ++) = K(J2 ,k); scale = +1

J1R = [k+1: J1_end]

K(J2,J1R) += scale*K(J2 ,k)*K(J1R ,k)’

K(J2 ,J2) += tril(B21*B21 ’ - A21*A21 ’)

J1_beg = J1_end + 1
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Dense single-core “Cholesky” sampling
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HPC dense Cholesky implementations can be trivially modified.

Maximum Likelihood inference and elementary DPP sampling are similar but
involve diagonal pivoting; the former uses the largest diagonal and the latter
samples from the PDF implied by the diagonal. One can modify a blocked
dense diagonally-pivoted Cholesky.

Sparse-direct Cholesky can be adapted for sampling a marginal kernel, but

arbitrary pivoting can destroy its advantages for MAP and elementary DPPs.
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