Equilibrating low-rank approximations with Gaussian priors

\&
 High-performance finite DPP sampling via mirror-image Cholesky

Jack Poulson
Google Research

ELSI Conference, August 2018

Overview

(1) Equilibrating low-rank approximations with Gaussian priors
(2) High-performance finite DPP sampling via mirror-image Cholesky

Motivation for analyzing equilibration

Recommender systems and language models often involve low-rank approximations of a large, sparse matrix A, e.g., a local minimum of:

$$
\mathcal{L}(X, Y)=\frac{1}{2}\left\|W \circ\left(A-X Y^{*}\right)\right\|_{F}^{2}+\frac{\lambda}{2}\left(\|X\|_{F}^{2}+\|Y\|_{F}^{2}\right)
$$

where W is a weighting matrix (often a function of A). ${ }^{1}$
This is Maximum Likelihood inference with $\left(X Y^{*}\right)_{i, j} \sim \mathcal{N}\left(A_{i, j}, W_{i, j}^{-2}\right)$ and priors $X_{i, j}, Y_{i, j} \sim \mathcal{N}(0,1 / \lambda) .{ }^{2}$

One can find an approximate local minimum via a few iterations of Weighted Alternating Least Squares.

A colleague (Steffen Rendle) observed that results for his model satisfied $X^{*} X=Y^{*} Y$. How do we prove (and exploit) this property?
${ }^{1}$ See, for example, [Hu et al.-2008] Collaborative filtering for implicit feedback datasets

[^0]
Motivation for analyzing equilibration

Recommender systems and language models often involve low-rank approximations of a large, sparse matrix A, e.g., a local minimum of:

$$
\mathcal{L}(X, Y)=\frac{1}{2}\left\|W \circ\left(A-X Y^{*}\right)\right\|_{F}^{2}+\frac{\lambda}{2}\left(\|X\|_{F}^{2}+\|Y\|_{F}^{2}\right)
$$

where W is a weighting matrix (often a function of A). ${ }^{1}$
This is Maximum Likelihood inference with $\left(X Y^{*}\right)_{i, j} \sim \mathcal{N}\left(A_{i, j}, W_{i, j}^{-2}\right)$ and priors $X_{i, j}, Y_{i, j} \sim \mathcal{N}(0,1 / \lambda) .{ }^{2}$

One can find an approximate local minimum via a few iterations of Weighted Alternating Least Squares. ${ }^{3}$

A colleague (Steffen Rendle) observed that results for his model satisfied $X^{*} X=Y^{*} Y$. How do we prove (and exploit) this property?

[^1]
Motivation for analyzing equilibration

Recommender systems and language models often involve low-rank approximations of a large, sparse matrix A, e.g., a local minimum of:

$$
\mathcal{L}(X, Y)=\frac{1}{2}\left\|W \circ\left(A-X Y^{*}\right)\right\|_{F}^{2}+\frac{\lambda}{2}\left(\|X\|_{F}^{2}+\|Y\|_{F}^{2}\right)
$$

where W is a weighting matrix (often a function of A). ${ }^{1}$
This is Maximum Likelihood inference with $\left(X Y^{*}\right)_{i, j} \sim \mathcal{N}\left(A_{i, j}, W_{i, j}^{-2}\right)$ and priors $X_{i, j}, Y_{i, j} \sim \mathcal{N}(0,1 / \lambda) .{ }^{2}$

One can find an approximate local minimum via a few iterations of Weighted Alternating Least Squares. ${ }^{3}$

A colleague (Steffen Rendle) observed that results for his model satisfied $X^{*} X=Y^{*} Y$. How do we prove (and exploit) this property?

[^2]
Motivation for analyzing equilibration

Recommender systems and language models often involve low-rank approximations of a large, sparse matrix A, e.g., a local minimum of:

$$
\mathcal{L}(X, Y)=\frac{1}{2}\left\|W \circ\left(A-X Y^{*}\right)\right\|_{F}^{2}+\frac{\lambda}{2}\left(\|X\|_{F}^{2}+\|Y\|_{F}^{2}\right)
$$

where W is a weighting matrix (often a function of A). ${ }^{1}$
This is Maximum Likelihood inference with $\left(X Y^{*}\right)_{i, j} \sim \mathcal{N}\left(A_{i, j}, W_{i, j}^{-2}\right)$ and priors $X_{i, j}, Y_{i, j} \sim \mathcal{N}(0,1 / \lambda) .{ }^{2}$

One can find an approximate local minimum via a few iterations of Weighted Alternating Least Squares. ${ }^{3}$

A colleague (Steffen Rendle) observed that results for his model satisfied $X^{*} X=Y^{*} Y$. How do we prove (and exploit) this property?

[^3]
Why the Gramians are equivalent $[1 / 3]$

Definition 1. Given $S \in \operatorname{Sym}(n, \mathbb{R})$, we will use the shorthand $P(S)$ for the linear operator $P(S): \operatorname{Sym}(n, \mathbb{R}) \rightarrow \operatorname{Sym}(n, \mathbb{R})$ via $P(S) A=S A S$.

```
Definition 2. The geometric mean of A,B\in S 午+ is
A#B=B#A=P(A}\mp@subsup{A}{}{1/2})(P(\mp@subsup{A}{}{-1/2})B\mp@subsup{)}{}{1/2
Proposition 1. For any }A,B\in\mp@subsup{S}{}{n}\mathrm{ , there is a unique }S\in\mp@subsup{S}{}{n}+\mathrm{ such that
P(S)A=B. .
Proof. For existence, put S=A A
For uniqueness, if P(S)A=P(T)A, then X*AX=A, with X = T-1}S\mathrm{ . Then
the spectral decomposition (S S/2 T-1 S '//2})(\mp@subsup{S}{}{1/2}Z)=(\mp@subsup{S}{}{1/2}Z)\wedge implie
XZ = Z^, ^\succ0. And Z**AZ = Z* (X*AX)Z = ^Z**AZ^, so }\wedge=I an
T=S.}
```

Definition 3. The Nesterov-Todd scaling point of $A, B \in S_{++}^{n}$ is
\square

[^4]
Why the Gramians are equivalent $[1 / 3]$

Definition 1. Given $S \in \operatorname{Sym}(n, \mathbb{R})$, we will use the shorthand $P(S)$ for the linear operator $P(S): \operatorname{Sym}(n, \mathbb{R}) \rightarrow \operatorname{Sym}(n, \mathbb{R})$ via $P(S) A=S A S$.

Definition 2. The geometric mean of $A, B \in S_{++}^{n}$ is $A \sharp B=B \sharp A=P\left(A^{1 / 2}\right)\left(P\left(A^{-1 / 2}\right) B\right)^{1 / 2}$.

Definition 3. The Nesterov-Todd scaling point of $A, B \in S_{++}^{n}$ is

\square

Why the Gramians are equivalent $[1 / 3]$

Definition 1. Given $S \in \operatorname{Sym}(n, \mathbb{R})$, we will use the shorthand $P(S)$ for the linear operator $P(S): \operatorname{Sym}(n, \mathbb{R}) \rightarrow \operatorname{Sym}(n, \mathbb{R})$ via $P(S) A=S A S$.

Definition 2. The geometric mean of $A, B \in S_{++}^{n}$ is $A \sharp B=B \sharp A=P\left(A^{1 / 2}\right)\left(P\left(A^{-1 / 2}\right) B\right)^{1 / 2}$.

Proposition 1. For any $A, B \in S_{++}^{n}$, there is a unique $S \in S_{++}^{n}$ such that $P(S) A=B .{ }^{4}$
Proof. For existence, put $S=A^{-1} \sharp B$
For uniqueness, if $P(S) A=P(T) A$, then $X^{*} A X=A$, with $X=T^{-1} S$. Then the spectral decomposition $\left(S^{1 / 2} T^{-1} S^{1 / 2}\right)\left(S^{1 / 2} Z\right)=\left(S^{1 / 2} Z\right) \wedge$ implies $X Z=Z \wedge, \wedge \succ 0$. And $Z^{*} A Z=Z^{*}\left(X^{*} A X\right) Z=\wedge Z^{*} A Z \wedge$, so $\Lambda=I$ and $T=S . \square$

Definition 3. The Nesterov-Todd scaling point of $A, B \in S_{++}^{n}$ is

\square
${ }^{4}$ [Anderson/Trapp-1980] Operator means and electrical networks, Cf. [Bhatia-2007] Positive Definite Matrices

Why the Gramians are equivalent $[1 / 3]$

Definition 1. Given $S \in \operatorname{Sym}(n, \mathbb{R})$, we will use the shorthand $P(S)$ for the linear operator $P(S): \operatorname{Sym}(n, \mathbb{R}) \rightarrow \operatorname{Sym}(n, \mathbb{R})$ via $P(S) A=S A S$.

Definition 2. The geometric mean of $A, B \in S_{++}^{n}$ is $A \sharp B=B \sharp A=P\left(A^{1 / 2}\right)\left(P\left(A^{-1 / 2}\right) B\right)^{1 / 2}$.

Proposition 1. For any $A, B \in S_{++}^{n}$, there is a unique $S \in S_{++}^{n}$ such that $P(S) A=B .{ }^{4}$
Proof. For existence, put $S=A^{-1} \sharp B$.

Definition 3. The Nesterov-Todd scaling point of $A, B \in S_{++}^{n}$ is

\square
${ }^{4}$ [Anderson/Trapp-1980] Operator means and electrical networks, Cf. [Bhatia-2007] Positive Definite Matrices

Why the Gramians are equivalent $[1 / 3]$

Definition 1. Given $S \in \operatorname{Sym}(n, \mathbb{R})$, we will use the shorthand $P(S)$ for the linear operator $P(S): \operatorname{Sym}(n, \mathbb{R}) \rightarrow \operatorname{Sym}(n, \mathbb{R})$ via $P(S) A=S A S$.

Definition 2. The geometric mean of $A, B \in S_{++}^{n}$ is $A \sharp B=B \sharp A=P\left(A^{1 / 2}\right)\left(P\left(A^{-1 / 2}\right) B\right)^{1 / 2}$.

Proposition 1. For any $A, B \in S_{++}^{n}$, there is a unique $S \in S_{++}^{n}$ such that $P(S) A=B .{ }^{4}$
Proof. For existence, put $S=A^{-1} \sharp B$.
For uniqueness, if $P(S) A=P(T) A$, then $X^{*} A X=A$, with $X=T^{-1} S$. Then the spectral decomposition $\left(S^{1 / 2} T^{-1} S^{1 / 2}\right)\left(S^{1 / 2} Z\right)=\left(S^{1 / 2} Z\right) \wedge$ implies $X Z=Z \Lambda, \Lambda \succ 0$. And $Z^{*} A Z=Z^{*}\left(X^{*} A X\right) Z=\Lambda Z^{*} A Z \Lambda$, so $\Lambda=I$ and $T=S . \square$

Definition 3. The Nesterov-Todd scaling point of $A, B \in S_{++}^{n}$ is

[^5]
Why the Gramians are equivalent $[1 / 3]$

Definition 1. Given $S \in \operatorname{Sym}(n, \mathbb{R})$, we will use the shorthand $P(S)$ for the linear operator $P(S): \operatorname{Sym}(n, \mathbb{R}) \rightarrow \operatorname{Sym}(n, \mathbb{R})$ via $P(S) A=S A S$.

Definition 2. The geometric mean of $A, B \in S_{++}^{n}$ is $A \sharp B=B \sharp A=P\left(A^{1 / 2}\right)\left(P\left(A^{-1 / 2}\right) B\right)^{1 / 2}$.

Proposition 1. For any $A, B \in S_{++}^{n}$, there is a unique $S \in S_{++}^{n}$ such that $P(S) A=B .{ }^{4}$
Proof. For existence, put $S=A^{-1} \sharp B$.
For uniqueness, if $P(S) A=P(T) A$, then $X^{*} A X=A$, with $X=T^{-1} S$. Then the spectral decomposition $\left(S^{1 / 2} T^{-1} S^{1 / 2}\right)\left(S^{1 / 2} Z\right)=\left(S^{1 / 2} Z\right) \wedge$ implies $X Z=Z \Lambda, \Lambda \succ 0$. And $Z^{*} A Z=Z^{*}\left(X^{*} A X\right) Z=\Lambda Z^{*} A Z \Lambda$, so $\Lambda=I$ and $T=S . \square$

Definition 3. The Nesterov-Todd scaling point of $A, B \in S_{++}^{n}$ is $P\left(S^{1 / 2}\right) A=P\left(S^{-1 / 2}\right) B$, where $S=A^{-1} \sharp B .^{5}$

[^6]
Why the Gramians are equivalent [2/3]

Lemma 4 (P.). Given $(X, Y) \in \mathbb{R}^{m \times r} \times \mathbb{R}^{n \times r}, S \in S_{++}^{n}$ minimizes $f: S_{++}^{n} \rightarrow \mathbb{R}_{+}$, where

$$
f(S)=\|X S\|_{F}^{2}+\left\|Y S^{-1}\right\|_{F}^{2}
$$

iff $P(S)\left(X^{*} X\right)=P\left(S^{-1}\right)\left(Y^{*} Y\right)$. And, if X and Y have full column rank, then $S=\left(\left(X^{*} X\right)^{-1} \sharp\left(Y^{*} Y\right)\right)^{1 / 2}$ is the unique minimizer.

Then h is a diffeomorphism and $d g_{T}:\left(T_{T} S_{++}^{n} \cong \operatorname{Sym}(n, \mathbb{R})\right) \rightarrow\left(T_{g(T)} \mathbb{R} \cong \mathbb{R}\right)$ via $d g_{T}(d T)=\left\langle X^{*} X-T^{-1} Y^{*} Y T^{-1}, d T\right\rangle$

So $S \in S_{++}^{n}$ is a critical point of f iff $d f_{S}=d g_{S^{2}} \circ d h_{S}=0$ iff

Why the Gramians are equivalent [2/3]

Lemma 4 (P.). Given $(X, Y) \in \mathbb{R}^{m \times r} \times \mathbb{R}^{n \times r}, S \in S_{++}^{n}$ minimizes $f: S_{++}^{n} \rightarrow \mathbb{R}_{+}$, where

$$
f(S)=\|X S\|_{F}^{2}+\left\|Y S^{-1}\right\|_{F}^{2}
$$

iff $P(S)\left(X^{*} X\right)=P\left(S^{-1}\right)\left(Y^{*} Y\right)$. And, if X and Y have full column rank, then $S=\left(\left(X^{*} X\right)^{-1} \sharp\left(Y^{*} Y\right)\right)^{1 / 2}$ is the unique minimizer.
Proof. Decompose f as $g \circ h$, where $h: S_{++}^{n} \rightarrow S_{++}^{n}$ via $h(S)=S^{2}$ and $g: S_{++}^{n} \rightarrow \mathbb{R}_{+}$via $g(T)=\left\langle X^{*} X, T\right\rangle+\left\langle Y^{*} Y, T^{-1}\right\rangle$.
Then h is a diffeomorphism and $d g_{T}:\left(T_{T} S_{++}^{n} \cong \operatorname{Sym}(n, \mathbb{R})\right) \rightarrow\left(T_{g(T)} \mathbb{R} \cong \mathbb{R}\right)$ via $d g_{T}(d T)=\left\langle X^{*} X-T^{-1} Y^{*} Y T^{-1}, d T\right\rangle$

So $S \in S^{n}$ is a critical point of f iff $d f_{S}=d g_{S^{2}} \circ d h_{S}=0$ iff

Why the Gramians are equivalent [2/3]

Lemma 4 (P.). Given $(X, Y) \in \mathbb{R}^{m \times r} \times \mathbb{R}^{n \times r}, S \in S_{++}^{n}$ minimizes $f: S_{++}^{n} \rightarrow \mathbb{R}_{+}$, where

$$
f(S)=\|X S\|_{F}^{2}+\left\|Y S^{-1}\right\|_{F}^{2}
$$

iff $P(S)\left(X^{*} X\right)=P\left(S^{-1}\right)\left(Y^{*} Y\right)$. And, if X and Y have full column rank, then $S=\left(\left(X^{*} X\right)^{-1} \sharp\left(Y^{*} Y\right)\right)^{1 / 2}$ is the unique minimizer.
Proof. Decompose f as $g \circ h$, where $h: S_{++}^{n} \rightarrow S_{++}^{n}$ via $h(S)=S^{2}$ and $g: S_{++}^{n} \rightarrow \mathbb{R}_{+}$via $g(T)=\left\langle X^{*} X, T\right\rangle+\left\langle Y^{*} Y, T^{-1}\right\rangle$.
Then h is a diffeomorphism and $d g_{T}:\left(T_{T} S_{++}^{n} \cong \operatorname{Sym}(n, \mathbb{R})\right) \rightarrow\left(T_{g(T)} \mathbb{R} \cong \mathbb{R}\right)$ via $d g_{T}(d T)=\left\langle X^{*} X-T^{-1} Y^{*} Y T^{-1}, d T\right\rangle$.

So $S \in S_{++}^{n}$ is a critical point of f iff $d f_{S}=d g_{S^{2}} \circ d h_{S}=0$ iff

Why the Gramians are equivalent [2/3]

Lemma 4 (P.). Given $(X, Y) \in \mathbb{R}^{m \times r} \times \mathbb{R}^{n \times r}, S \in S_{++}^{n}$ minimizes $f: S_{++}^{n} \rightarrow \mathbb{R}_{+}$, where

$$
f(S)=\|X S\|_{F}^{2}+\left\|Y S^{-1}\right\|_{F}^{2}
$$

iff $P(S)\left(X^{*} X\right)=P\left(S^{-1}\right)\left(Y^{*} Y\right)$. And, if X and Y have full column rank, then $S=\left(\left(X^{*} X\right)^{-1} \sharp\left(Y^{*} Y\right)\right)^{1 / 2}$ is the unique minimizer.
Proof. Decompose f as $g \circ h$, where $h: S_{++}^{n} \rightarrow S_{++}^{n}$ via $h(S)=S^{2}$ and $g: S_{++}^{n} \rightarrow \mathbb{R}_{+}$via $g(T)=\left\langle X^{*} X, T\right\rangle+\left\langle Y^{*} Y, T^{-1}\right\rangle$.
Then h is a diffeomorphism and $d g_{T}:\left(T_{T} S_{++}^{n} \cong \operatorname{Sym}(n, \mathbb{R})\right) \rightarrow\left(T_{g(T)} \mathbb{R} \cong \mathbb{R}\right)$ via $d g_{T}(d T)=\left\langle X^{*} X-T^{-1} Y^{*} Y T^{-1}, d T\right\rangle$.

So $S \in S_{++}^{n}$ is a critical point of f iff $d f_{S}=d g_{S^{2}} \circ d h_{S}=0$ iff $X^{*} X-S^{-2} Y^{*} Y S^{-2}=0$

Why the Gramians are equivalent [3/3]

Theorem 5 (P.). If $\ell: \mathbb{R}^{m \times n} \rightarrow \mathbb{R}$ is continuous, the local minima of $\mathcal{L}: \mathbb{R}^{m \times r} \times \mathbb{R}^{n \times r} \rightarrow \mathbb{R}$, where

$$
\mathcal{L}(X, Y)=\ell\left(X Y^{*}\right)+\frac{\lambda}{2}\left(\|X\|_{F}^{2}+\|Y\|_{F}^{2}\right),
$$

satisfy $X^{*} X=Y^{*} Y$. And, given any candidate (X, Y), the equilibration, $\left(X S^{1 / 2}, Y S^{-1 / 2}\right)$, where $S=\left(X^{*} X\right)^{-1} \sharp\left(Y^{*} Y\right)$, minimizes the regularization while preserving the input to ℓ.

where we exploited the polar decomposition $Z=S Q, Q$ unitary. The result then follows from our lemma. \square

Why the Gramians are equivalent [3/3]

Theorem 5 (P.). If $\ell: \mathbb{R}^{m \times n} \rightarrow \mathbb{R}$ is continuous, the local minima of $\mathcal{L}: \mathbb{R}^{m \times r} \times \mathbb{R}^{n \times r} \rightarrow \mathbb{R}$, where

$$
\mathcal{L}(X, Y)=\ell\left(X Y^{*}\right)+\frac{\lambda}{2}\left(\|X\|_{F}^{2}+\|Y\|_{F}^{2}\right),
$$

satisfy $X^{*} X=Y^{*} Y$. And, given any candidate (X, Y), the equilibration, $\left(X S^{1 / 2}, Y S^{-1 / 2}\right)$, where $S=\left(X^{*} X\right)^{-1} \sharp\left(Y^{*} Y\right)$, minimizes the regularization while preserving the input to ℓ.
Proof. Given $(X, Y), \ell\left(X Y^{*}\right)$ is invariant under any transformation $(X, Y) \mapsto\left(X Z, Y Z^{-*}\right)$ where $Z \in G L(n, \mathbb{R})$.
where we exploited the polar decomposition $Z=S Q, Q$ unitary. The result then follows from our lemma. \square

Why the Gramians are equivalent [3/3]

Theorem 5 (P.). If $\ell: \mathbb{R}^{m \times n} \rightarrow \mathbb{R}$ is continuous, the local minima of $\mathcal{L}: \mathbb{R}^{m \times r} \times \mathbb{R}^{n \times r} \rightarrow \mathbb{R}$, where

$$
\mathcal{L}(X, Y)=\ell\left(X Y^{*}\right)+\frac{\lambda}{2}\left(\|X\|_{F}^{2}+\|Y\|_{F}^{2}\right),
$$

satisfy $X^{*} X=Y^{*} Y$. And, given any candidate (X, Y), the equilibration, $\left(X S^{1 / 2}, Y S^{-1 / 2}\right)$, where $S=\left(X^{*} X\right)^{-1} \sharp\left(Y^{*} Y\right)$, minimizes the regularization while preserving the input to ℓ.
Proof. Given $(X, Y), \ell\left(X Y^{*}\right)$ is invariant under any transformation $(X, Y) \mapsto\left(X Z, Y Z^{-*}\right)$ where $Z \in G L(n, \mathbb{R})$.
Thus, any local minimum must satisfy

$$
\begin{aligned}
\|X\|_{F}^{2}+\|Y\|_{F}^{2} & =\min _{z \in G L(n, \mathbb{R})}\left\{\|X Z\|_{F}^{2}+\left\|Y Z^{-*}\right\|_{F}^{2}\right\} \\
& =\min _{S \in S_{++}^{n}}\left\{\|X S\|_{F}^{2}+\left\|Y S^{-1}\right\|_{F}^{2}\right\}
\end{aligned}
$$

where we exploited the polar decomposition $Z=S Q, Q$ unitary.
then follows from our lemma. \square

Why the Gramians are equivalent [3/3]

Theorem 5 (P.). If $\ell: \mathbb{R}^{m \times n} \rightarrow \mathbb{R}$ is continuous, the local minima of $\mathcal{L}: \mathbb{R}^{m \times r} \times \mathbb{R}^{n \times r} \rightarrow \mathbb{R}$, where

$$
\mathcal{L}(X, Y)=\ell\left(X Y^{*}\right)+\frac{\lambda}{2}\left(\|X\|_{F}^{2}+\|Y\|_{F}^{2}\right),
$$

satisfy $X^{*} X=Y^{*} Y$. And, given any candidate (X, Y), the equilibration, $\left(X S^{1 / 2}, Y S^{-1 / 2}\right)$, where $S=\left(X^{*} X\right)^{-1} \sharp\left(Y^{*} Y\right)$, minimizes the regularization while preserving the input to ℓ.
Proof. Given $(X, Y), \ell\left(X Y^{*}\right)$ is invariant under any transformation $(X, Y) \mapsto\left(X Z, Y Z^{-*}\right)$ where $Z \in G L(n, \mathbb{R})$.
Thus, any local minimum must satisfy

$$
\begin{aligned}
\|X\|_{F}^{2}+\|Y\|_{F}^{2} & =\min _{z \in G L(n, \mathbb{R})}\left\{\|X Z\|_{F}^{2}+\left\|Y Z^{-*}\right\|_{F}^{2}\right\} \\
& =\min _{S \in S_{++}^{n}}\left\{\|X S\|_{F}^{2}+\left\|Y S^{-1}\right\|_{F}^{2}\right\}
\end{aligned}
$$

where we exploited the polar decomposition $Z=S Q, Q$ unitary. The result then follows from our lemma.

Equilibrating block coordinate descent

Given

$$
\mathcal{L}(X, Y)=\ell\left(X Y^{*}\right)+\frac{\lambda}{2}\left(\|X\|_{F}^{2}+\|Y\|_{F}^{2}\right),
$$

insert an equilibration step between each block coordinate descent step. E.g., if X and Y have full column rank, replace

$$
(X, Y) \mapsto\left(X S^{1 / 2}, Y S^{-1 / 2}\right), \quad S=\left(X^{*} X\right)^{-1} \sharp\left(Y^{*} Y\right),
$$

which can be computed in $O\left((m+n+r) r^{2}\right)$ time.
Equilibration is essentially free and keeps the regularization minimized (with the constraint of preserving the loss function input).

If one thinks of $\left(X^{*} X, Y^{*} Y\right)$ as analogous to a primal/dual pair in an SDP IPM, this is similar to centering the Newton step about the NT point.

Equilibration has a much more pronounced effect for small regularization values.

Equilibrating block coordinate descent

Given

$$
\mathcal{L}(X, Y)=\ell\left(X Y^{*}\right)+\frac{\lambda}{2}\left(\|X\|_{F}^{2}+\|Y\|_{F}^{2}\right)
$$

insert an equilibration step between each block coordinate descent step. E.g., if X and Y have full column rank, replace

$$
(X, Y) \mapsto\left(X S^{1 / 2}, Y S^{-1 / 2}\right), \quad S=\left(X^{*} X\right)^{-1} \sharp\left(Y^{*} Y\right),
$$

which can be computed in $O\left((m+n+r) r^{2}\right)$ time.
Equilibration is essentially free and keeps the regularization minimized (with the constraint of preserving the loss function input).

If one thinks of $\left(X^{*} X, Y^{*} Y\right)$ as analogous to a primal/dual pair in an SDP IPM, this is similar to centering the Newton step about the NT point.

Equilibration has a much more pronounced effect for small regularization values.

Equilibrating block coordinate descent

Given

$$
\mathcal{L}(X, Y)=\ell\left(X Y^{*}\right)+\frac{\lambda}{2}\left(\|X\|_{F}^{2}+\|Y\|_{F}^{2}\right)
$$

insert an equilibration step between each block coordinate descent step. E.g., if X and Y have full column rank, replace

$$
(X, Y) \mapsto\left(X S^{1 / 2}, Y S^{-1 / 2}\right), \quad S=\left(X^{*} X\right)^{-1} \sharp\left(Y^{*} Y\right)
$$

which can be computed in $O\left((m+n+r) r^{2}\right)$ time.
Equilibration is essentially free and keeps the regularization minimized (with the constraint of preserving the loss function input).

If one thinks of $\left(X^{*} X, Y^{*} Y\right)$ as analogous to a primal/dual pair in an SDP IPM, this is similar to centering the Newton step about the NT point.

Equilibration has a much more pronounced effect for small regularization values.

Equilibrating block coordinate descent

Given

$$
\mathcal{L}(X, Y)=\ell\left(X Y^{*}\right)+\frac{\lambda}{2}\left(\|X\|_{F}^{2}+\|Y\|_{F}^{2}\right)
$$

insert an equilibration step between each block coordinate descent step. E.g., if X and Y have full column rank, replace

$$
(X, Y) \mapsto\left(X S^{1 / 2}, Y S^{-1 / 2}\right), \quad S=\left(X^{*} X\right)^{-1} \sharp\left(Y^{*} Y\right)
$$

which can be computed in $O\left((m+n+r) r^{2}\right)$ time.
Equilibration is essentially free and keeps the regularization minimized (with the constraint of preserving the loss function input).

If one thinks of $\left(X^{*} X, Y^{*} Y\right)$ as analogous to a primal/dual pair in an SDP IPM, this is similar to centering the Newton step about the NT point.

Equilibration has a much more pronounced effect for small regularization values.

A trivial example

Consider minimizing $(\alpha-\chi \eta)^{2}+\lambda\left(\chi^{2}+\eta^{2}\right)$ given $\alpha=1$, $\lambda=0.001, \chi_{0}=\eta_{0}=2$.

Handling ill-conditioned Gramians [1/2]

The Nesterov-Todd equilibration obviously makes assumptions about the invertibility of the Gramians.

Geometrically, $S=A \sharp B$, when $A, B \in S_{++}^{n}$, is well-known to be the Euclidean midpoint between $\log (A)$ and $\log (B)$ and the midpoint of the geodesic between A and B when S_{++}^{n} is equipped with the left-invariant metric $g \times(S, T)=\left\langle X^{-1} S, X^{-1} T\right\rangle$

One could extend the geometric mean to the boundary via:

$$
A \sharp B=\lim (A+\epsilon I) \sharp(B+\epsilon I) .
$$

But this extension is discontinuous [Bhatia-2007]: Let

$$
A=\left(\begin{array}{ll}
4 & 0 \\
0 & 1
\end{array}\right), B=\left(\begin{array}{cc}
20 & 6 \\
6 & 2
\end{array}\right), X_{n}=\left(\begin{array}{cc}
1 & 0 \\
0 & 1 / n
\end{array}\right) \rightarrow X=\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right)
$$

Then, for $\Phi_{n}(A)=X_{n}^{*} A X_{n}, \Phi_{n}(A) \sharp \Phi_{n}(B)=\Phi_{n}(A \sharp B)$.
But sequential continuity is violated:

Handling ill-conditioned Gramians [1/2]

The Nesterov-Todd equilibration obviously makes assumptions about the invertibility of the Gramians.

Geometrically, $S=A \sharp B$, when $A, B \in S_{++}^{n}$, is well-known to be the Euclidean midpoint between $\log (A)$ and $\log (B)$ and the midpoint of the geodesic between A and B when S_{++}^{n} is equipped with the left-invariant metric $g_{X}(S, T)=\left\langle X^{-1} S, X^{-1} T\right\rangle$.

One could extend the geometric mean to the boundary via:

$$
A \sharp B=\lim _{\epsilon \downarrow 0}(A+\epsilon I) \sharp(B+\epsilon I) .
$$

But this extension is discontinuous [Bhatia-2007]: Let

Then, for $\Phi_{n}(A)=X_{n}^{*} A X_{n}, \Phi_{n}(A) \sharp \Phi_{n}(B)=\Phi_{n}(A \sharp B)$.
But sequential continuity is violated:

Handling ill-conditioned Gramians [1/2]

The Nesterov-Todd equilibration obviously makes assumptions about the invertibility of the Gramians.

Geometrically, $S=A \sharp B$, when $A, B \in S_{++}^{n}$, is well-known to be the Euclidean midpoint between $\log (A)$ and $\log (B)$ and the midpoint of the geodesic between A and B when S_{++}^{n} is equipped with the left-invariant metric $g_{X}(S, T)=\left\langle X^{-1} S, X^{-1} T\right\rangle$.

One could extend the geometric mean to the boundary via:

$$
A \sharp B=\lim _{\epsilon \downarrow 0}(A+\epsilon I) \sharp(B+\epsilon I) .
$$

But this extension is discontinuous [Bhatia-2007]: Let

Then, for $\Phi_{n}(A)=X_{n}^{*} A X_{n}, \Phi_{n}(A) \sharp \Phi_{n}(B)=\Phi_{n}(A \sharp B)$. But sequential continuity is violated:

Handling ill-conditioned Gramians [1/2]

The Nesterov-Todd equilibration obviously makes assumptions about the invertibility of the Gramians.

Geometrically, $S=A \sharp B$, when $A, B \in S_{++}^{n}$, is well-known to be the Euclidean midpoint between $\log (A)$ and $\log (B)$ and the midpoint of the geodesic between A and B when S_{++}^{n} is equipped with the left-invariant metric $g_{X}(S, T)=\left\langle X^{-1} S, X^{-1} T\right\rangle$.

One could extend the geometric mean to the boundary via:

$$
A \sharp B=\lim _{\epsilon \downarrow 0}(A+\epsilon I) \sharp(B+\epsilon I) .
$$

But this extension is discontinuous [Bhatia-2007]: Let

$$
A=\left(\begin{array}{ll}
4 & 0 \\
0 & 1
\end{array}\right), B=\left(\begin{array}{cc}
20 & 6 \\
6 & 2
\end{array}\right), X_{n}=\left(\begin{array}{cc}
1 & 0 \\
0 & 1 / n
\end{array}\right) \rightarrow X=\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right)
$$

Then, for $\Phi_{n}(A)=X_{n}^{*} A X_{n}, \Phi_{n}(A) \sharp \Phi_{n}(B)=\Phi_{n}(A \sharp B)$.

[^7]

Handling ill-conditioned Gramians [1/2]

The Nesterov-Todd equilibration obviously makes assumptions about the invertibility of the Gramians.

Geometrically, $S=A \sharp B$, when $A, B \in S_{++}^{n}$, is well-known to be the Euclidean midpoint between $\log (A)$ and $\log (B)$ and the midpoint of the geodesic between A and B when S_{++}^{n} is equipped with the left-invariant metric $g_{X}(S, T)=\left\langle X^{-1} S, X^{-1} T\right\rangle$.

One could extend the geometric mean to the boundary via:

$$
A \sharp B=\lim _{\epsilon \downarrow 0}(A+\epsilon I) \sharp(B+\epsilon I) .
$$

But this extension is discontinuous [Bhatia-2007]: Let

$$
A=\left(\begin{array}{ll}
4 & 0 \\
0 & 1
\end{array}\right), B=\left(\begin{array}{cc}
20 & 6 \\
6 & 2
\end{array}\right), X_{n}=\left(\begin{array}{cc}
1 & 0 \\
0 & 1 / n
\end{array}\right) \rightarrow X=\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right)
$$

Then, for $\Phi_{n}(A)=X_{n}^{*} A X_{n}, \Phi_{n}(A) \sharp \Phi_{n}(B)=\Phi_{n}(A \sharp B)$.
But sequential continuity is violated:

$$
\begin{aligned}
& \lim _{n \uparrow \infty} \Phi_{n}(A) \sharp \Phi_{n}(B)=\lim _{n \uparrow \infty} \Phi_{n}(A \sharp B)=\Phi(A \sharp B)=\left(\begin{array}{ll}
8 & 0 \\
0 & 0
\end{array}\right), \\
& \left(\lim _{n \uparrow \infty} \Phi_{n}(A)\right) \sharp\left(\lim _{n \uparrow \infty} \Phi_{n}(B)\right)=\Phi(A) \sharp \Phi(B)=\left(\begin{array}{cc}
\sqrt{80} & 0 \\
0 & 0
\end{array}\right) .
\end{aligned}
$$

Handling ill-conditioned Gramians [2/2]

We thus saw that the extension:

$$
A \sharp B=\lim _{\epsilon \downarrow 0}(A+\epsilon I) \sharp(B+\epsilon I)
$$

can lead to singular geometric means (in addition to being discontinuous).
But if we only care about backwards stability, then there is no issue. One can compute $S=\widehat{X * X}^{-1} \sharp \widehat{Y * Y}$, where $\hat{Z}=Z+\alpha\|Z\|_{F}$ for some $\alpha \ll 1$, equilibrate with S, and perhaps repeat.

This extends the applicability from S_{++}^{n} to $S_{+}^{n} \backslash\{0\}$

Handling ill-conditioned Gramians [2/2]

We thus saw that the extension:

$$
A \sharp B=\lim _{\epsilon \downarrow 0}(A+\epsilon I) \sharp(B+\epsilon I)
$$

can lead to singular geometric means (in addition to being discontinuous).
But if we only care about backwards stability, then there is no issue. One can compute $S=\widehat{X * X}^{-1} \sharp \widehat{Y^{*} Y}$, where $\hat{Z}=Z+\alpha\|Z\|_{F}$ for some $\alpha \ll 1$, equilibrate with S, and perhaps repeat.

This extends the applicability from S_{++}^{n} to $S_{+}^{n} \backslash\{0\}$

Handling ill-conditioned Gramians [2/2]

We thus saw that the extension:

$$
A \sharp B=\lim _{\epsilon \downarrow 0}(A+\epsilon I) \sharp(B+\epsilon I)
$$

can lead to singular geometric means (in addition to being discontinuous).
But if we only care about backwards stability, then there is no issue. One can compute $S=\widehat{X * X}^{-1} \sharp \widehat{Y^{*} Y}$, where $\hat{Z}=Z+\alpha\|Z\|_{F}$ for some $\alpha \ll 1$, equilibrate with S, and perhaps repeat.

This extends the applicability from S_{++}^{n} to $S_{+}^{n} \backslash\{0\}$.

Another toy example

Consider minimizing $\left\|A-X Y^{*}\right\|_{F}^{2}+\lambda\left(\|X\|_{F}^{2}+\|Y\|_{F}^{2}\right)$, given $A=\operatorname{randn}(200,400), \lambda=0.1, X_{0}=\operatorname{randn}(200,10)$, $Y_{0}=[\operatorname{randn}(400,9), \operatorname{zeros}(400,1)]$.

Jordan-algebraic interpretations

Recall our definition $P(S): \operatorname{Sym}(n, \mathbb{R}) \rightarrow \operatorname{Sym}(n, \mathbb{R})$ via $P(S) A=S A S$.
This is a special case of the quadratic representation of a Jordan algebra V, where $P(x)=2 L(x)^{2}-L\left(x^{2}\right)$ and $L(x): V \rightarrow V$ is left application of $x \in V .{ }^{6}$ For $V=\operatorname{Sym}(n, \mathbb{R})$ with Jordan product $A \circ B \equiv \frac{1}{2}(A B+B A), L(A) B \equiv A \circ B$

$$
P(A) B=2(A \circ(A \circ B))-A^{2} \circ B=A B A .
$$

The 1-to-1 correspondence between symmetric cones and squares of Euclidean Jordan algebras [Faraut/Koranyi-1998] is commonly exploited in Interior Point Methods (especially for Lorentz cones). ${ }^{7}$

One can easily build on Prop'n 1 to show: given $A, B \in \operatorname{int}\left(V^{2}\right)$, there is a unique $S \in \operatorname{int}\left(V^{2}\right)$ such that $P(S) A=B^{8}$ The definitions of geometric means and Nesterov-Todd scaling points carry over through usage of P

[^8]
Jordan-algebraic interpretations

Recall our definition $P(S): \operatorname{Sym}(n, \mathbb{R}) \rightarrow \operatorname{Sym}(n, \mathbb{R})$ via $P(S) A=S A S$.
This is a special case of the quadratic representation of a Jordan algebra V, where $P(x)=2 L(x)^{2}-L\left(x^{2}\right)$ and $L(x): V \rightarrow V$ is left application of $x \in V .{ }^{6}$

For $V=\operatorname{Sym}(n, \mathbb{R})$ with Jordan product $A \circ B \equiv \frac{1}{2}(A B+B A), L(A) B \equiv A \circ B$

$$
P(A) B=2(A \circ(A \circ B))-A^{2} \circ B=A B A .
$$

The 1-to-1 correspondence between symmetric cones and squares of Euclidean Jordan algebras [Faraut/Koranyi-1998] is commonly exploited in Interior Point Methods (especially for Lorentz cones).

One can easily build on Prop' $n 1$ to show: given $A, B \in \operatorname{int}\left(V^{2}\right)$, there is a unique $S \in \operatorname{int}\left(V^{2}\right)$ such that $P(S) \Delta=B^{8}$ The definitions of geometric
means and Nesterov-Todd scaling points carry over through usage of P

[^9][Lim-2000] Geometric means on symmetric cones

Jordan-algebraic interpretations

Recall our definition $P(S): \operatorname{Sym}(n, \mathbb{R}) \rightarrow \operatorname{Sym}(n, \mathbb{R})$ via $P(S) A=S A S$.
This is a special case of the quadratic representation of a Jordan algebra V, where $P(x)=2 L(x)^{2}-L\left(x^{2}\right)$ and $L(x): V \rightarrow V$ is left application of $x \in V .{ }^{6}$

For $V=\operatorname{Sym}(n, \mathbb{R})$ with Jordan product $A \circ B \equiv \frac{1}{2}(A B+B A), L(A) B \equiv A \circ B$:

$$
P(A) B=2(A \circ(A \circ B))-A^{2} \circ B=A B A .
$$

The 1-to-1 correspondence between symmetric cones and squares of Euclidean Jordan algebras [Faraut/Koranyi-1998] is commonly exploited in Interior Point Methods (especially for Lorentz cones).

One can easily build on Prop'n 1 to show: given $A, B \in \operatorname{int}\left(V^{2}\right)$, there is a unique $S \in \operatorname{int}\left(V^{2}\right)$ such that $P(S) \Delta=B^{8}$ The definitions of geometric
means and Nesterov-Todd scaling points carry over through usage of P

[^10][Lim-2000] Geometric means on symmetric cones

Jordan-algebraic interpretations

Recall our definition $P(S): \operatorname{Sym}(n, \mathbb{R}) \rightarrow \operatorname{Sym}(n, \mathbb{R})$ via $P(S) A=S A S$.
This is a special case of the quadratic representation of a Jordan algebra V, where $P(x)=2 L(x)^{2}-L\left(x^{2}\right)$ and $L(x): V \rightarrow V$ is left application of $x \in V{ }^{6}$

For $V=\operatorname{Sym}(n, \mathbb{R})$ with Jordan product $A \circ B \equiv \frac{1}{2}(A B+B A), L(A) B \equiv A \circ B$:

$$
P(A) B=2(A \circ(A \circ B))-A^{2} \circ B=A B A
$$

The 1-to-1 correspondence between symmetric cones and squares of Euclidean Jordan algebras [Faraut/Koranyi-1998] is commonly exploited in Interior Point Methods (especially for Lorentz cones). ${ }^{7}$

One can easily build on Prop'n 1 to show: given $A, B \in \operatorname{int}\left(V^{2}\right)$, there is a unique $S \in \operatorname{int}\left(V^{2}\right)$ such that $P(S) A=B^{8}$ The definitions of geometric means and Nesterov-Todd scaling points carry over through usage of P.

[^11]
Jordan-algebraic interpretations

Recall our definition $P(S): \operatorname{Sym}(n, \mathbb{R}) \rightarrow \operatorname{Sym}(n, \mathbb{R})$ via $P(S) A=S A S$.
This is a special case of the quadratic representation of a Jordan algebra V, where $P(x)=2 L(x)^{2}-L\left(x^{2}\right)$ and $L(x): V \rightarrow V$ is left application of $x \in V .{ }^{6}$
For $V=\operatorname{Sym}(n, \mathbb{R})$ with Jordan product $A \circ B \equiv \frac{1}{2}(A B+B A), L(A) B \equiv A \circ B$:

$$
P(A) B=2(A \circ(A \circ B))-A^{2} \circ B=A B A .
$$

The 1-to-1 correspondence between symmetric cones and squares of Euclidean Jordan algebras [Faraut/Koranyi-1998] is commonly exploited in Interior Point Methods (especially for Lorentz cones). ${ }^{7}$

One can easily build on Prop'n 1 to show: given $A, B \in \operatorname{int}\left(V^{2}\right)$, there is a unique $S \in \operatorname{int}\left(V^{2}\right)$ such that $P(S) A=B .^{8}$ The definitions of geometric means and Nesterov-Todd scaling points carry over through usage of P.

[^12]
Determinantal Point Processes

Definition 6. A marginal kernel matrix is a (real or complex) Hermitian matrix whose eigenvalues live in $[0,1]$.

Definition 7. A (finite) Determinantal Point Process (DPP) is a random variable \mathbf{Y} over the power set of $\mathcal{Y}=\{1, \ldots, k\} \subset \mathbb{N}$ generated by a $k \times k$ marginal kernel matrix K via the rule

$$
P_{K}[Y \subseteq \mathbf{Y}]=\operatorname{det}\left(K_{Y}\right)
$$

where K_{Y} is the $|Y| \times|Y|$ submatrix of K formed by restricting to the rows and columns in the index set Y.

Definition 8. A DPP is called elementary if the eigenvalues of its marginal
kernel matrix are all either 0 or 1 .

Determinantal Point Processes

Definition 6. A marginal kernel matrix is a (real or complex) Hermitian matrix whose eigenvalues live in $[0,1]$.

Definition 7. A (finite) Determinantal Point Process (DPP) is a random variable \mathbf{Y} over the power set of $\mathcal{Y}=\{1, \ldots, k\} \subset \mathbb{N}$ generated by a $k \times k$ marginal kernel matrix K via the rule

$$
P_{K}[Y \subseteq \mathbf{Y}]=\operatorname{det}\left(K_{Y}\right)
$$

where K_{Y} is the $|Y| \times|Y|$ submatrix of K formed by restricting to the rows and columns in the index set Y.

Definition 8. A DPP is called elementary if the eigenvalues of its marginal kernel matrix are all either 0 or 1 .

Determinantal Point Processes

Definition 6. A marginal kernel matrix is a (real or complex) Hermitian matrix whose eigenvalues live in $[0,1]$.

Definition 7. A (finite) Determinantal Point Process (DPP) is a random variable \mathbf{Y} over the power set of $\mathcal{Y}=\{1, \ldots, k\} \subset \mathbb{N}$ generated by a $k \times k$ marginal kernel matrix K via the rule

$$
P_{K}[Y \subseteq \mathbf{Y}]=\operatorname{det}\left(K_{Y}\right)
$$

where K_{Y} is the $|Y| \times|Y|$ submatrix of K formed by restricting to the rows and columns in the index set Y.

Definition 8. A DPP is called elementary if the eigenvalues of its marginal kernel matrix are all either 0 or 1 .

How to sample a DPP?

Traditional algorithms [Hough et al.-2006] used an eigendecomposition of the kernel matrix and transformed the eigenvalues their Bernoulli draw to reduce to an elementary DPP (which was then sampled with a quartic algorithm). ${ }^{9}$
> [Gillenwater-2014] reduced the factored elementary DPP sampling down to
cubic complexity via what is equivalent to diagonally-pivoted Cholesky. ${ }^{10}$

Recently, authors are noticing the connections to Cholesky factorization for MAP inference and directly sampling from the marginal kernel

I will give a simple proof of a cubic Cholesky-like algorithm for directly sampling from a marginal kernel and provide a high-nerformance blocked equivalent
${ }^{9}$ [Hough et al.-2006] Determinantal point processes and independence, Cf. [Kulesza/Taskar-2012] Determinantal point processes for machine learning.
${ }^{10}$ [Gillenwater-2014] Approximate inference for determinantal point processes
Processes, [Launay et al.-2018] Exact sampling of determinantal point
processes without eigendecomposition

How to sample a DPP?

Traditional algorithms [Hough et al.-2006] used an eigendecomposition of the kernel matrix and transformed the eigenvalues their Bernoulli draw to reduce to an elementary DPP (which was then sampled with a quartic algorithm). ${ }^{9}$
[Gillenwater-2014] reduced the factored elementary DPP sampling down to cubic complexity via what is equivalent to diagonally-pivoted Cholesky. ${ }^{10}$

Recently, authors are noticing the connections to Cholesky factorization for MAP inference and directly sampling from the marginal kernel.

I will give a simple proof of a cubic Cholesky-like algorithm for directly sampling from a marginal kernel and provide a high-performance blocked equivalent.
${ }^{9}$ [Hough et al.-2006] Determinantal point processes and independence, Cf. [Kulesza/Taskar-2012] Determinantal point processes for machine learning.
${ }^{10}$ [Gillenwater-2014] Approximate inference for determinantal point processes

Processes, [Launay et al.-2018] Exact sampling of determinantal point

How to sample a DPP?

Traditional algorithms [Hough et al.-2006] used an eigendecomposition of the kernel matrix and transformed the eigenvalues their Bernoulli draw to reduce to an elementary DPP (which was then sampled with a quartic algorithm). ${ }^{9}$
[Gillenwater-2014] reduced the factored elementary DPP sampling down to cubic complexity via what is equivalent to diagonally-pivoted Cholesky. ${ }^{10}$

Recently, authors are noticing the connections to Cholesky factorization for MAP inference and directly sampling from the marginal kernel.11

I will give a simple proof of a cubic Cholesky-like algorithm for directly sampling from a marginal kernel and provide a high-nerformance blocked equivalent

[^13]
How to sample a DPP?

Traditional algorithms [Hough et al.-2006] used an eigendecomposition of the kernel matrix and transformed the eigenvalues their Bernoulli draw to reduce to an elementary DPP (which was then sampled with a quartic algorithm). ${ }^{9}$
[Gillenwater-2014] reduced the factored elementary DPP sampling down to cubic complexity via what is equivalent to diagonally-pivoted Cholesky. ${ }^{10}$

Recently, authors are noticing the connections to Cholesky factorization for MAP inference and directly sampling from the marginal kernel.11

I will give a simple proof of a cubic Cholesky-like algorithm for directly sampling from a marginal kernel and provide a high-performance blocked equivalent.

[^14]
Complementary DPPs

Lemma 9 (Hough et al-2006). Given any $\mathbf{Y} \sim \operatorname{DPP}(K)$, where K has spectral decomposition $Q \wedge Q^{*}$, sampling from \mathbf{Y} is equivalent to sampling from the random elementary DPP with kernel $P\left(Q_{\mathrm{z}}\right)$, where $P(U) \equiv U U^{*}$ and Q_{Z} consists of the columns of Q with indices from $\mathbf{Z} \sim \operatorname{DPP}(\Lambda)$.

```
Lemma 10. Given any Y ~ DPP(K), Y}\mp@subsup{}{}{c}~\operatorname{DPP}(I-K)\mathrm{ (which we call the
complementary DPP). Proof. The case where K is elementary is proven in
[Tao-2009] via showing that the squared determinants of the diagonal blocks of
a 2\times2 partition of an orthonormal matrix are equal. .12
In the general case, if K has spectral decomposition Q\wedgeQ*, then I - K has
spectral decomposition Q(I-\Lambda)Q*. And the probability of drawing }J\mathrm{ from
DPP}(\Lambda)\mathrm{ is equal to that of drawing J}\mp@subsup{J}{}{c}\mathrm{ from DPP( }I-\Lambda
The result for the elementary case then shows that, if Z ~ DPP}(Q,\mp@subsup{Q}{\jmath}{*})\mathrm{ , then
Z
Lemma 9.
```


Complementary DPPs

Lemma 9 (Hough et al-2006). Given any $\mathbf{Y} \sim \operatorname{DPP}(K)$, where K has spectral decomposition $Q \wedge Q^{*}$, sampling from \mathbf{Y} is equivalent to sampling from the random elementary DPP with kernel $P\left(Q_{\mathrm{z}}\right)$, where $P(U) \equiv U U^{*}$ and Q_{Z} consists of the columns of Q with indices from $\mathbf{Z} \sim \operatorname{DPP}(\Lambda)$.

Lemma 10. Given any $\mathbf{Y} \sim \operatorname{DPP}(K), \mathbf{Y}^{c} \sim \operatorname{DPP}(I-K)$ (which we call the complementary DPP).

[^15]
Complementary DPPs

Lemma 9 (Hough et al-2006). Given any $\mathbf{Y} \sim \operatorname{DPP}(K)$, where K has spectral decomposition $Q \wedge Q^{*}$, sampling from \mathbf{Y} is equivalent to sampling from the random elementary DPP with kernel $P\left(Q_{\mathrm{z}}\right)$, where $P(U) \equiv U U^{*}$ and Q_{Z} consists of the columns of Q with indices from $\mathbf{Z} \sim \operatorname{DPP}(\Lambda)$.

Lemma 10. Given any $\mathbf{Y} \sim \operatorname{DPP}(K), \mathbf{Y}^{c} \sim \operatorname{DPP}(I-K)$ (which we call the complementary DPP). Proof. The case where K is elementary is proven in [Tao-2009] via showing that the squared determinants of the diagonal blocks of a 2×2 partition of an orthonormal matrix are equal. ${ }^{12}$

The result for the elementary case then shows that, if $\mathbf{Z} \sim \operatorname{DPP}\left(Q, Q_{\jmath}^{*}\right)$, then $Z^{c} \sim \operatorname{DPP}\left(I-Q_{\jmath} Q_{\jmath}^{*}\right)=\operatorname{DPP}\left(Q_{\jmath c} Q_{\jmath c}^{*}\right)$. The general case then follows from Lemma 9.
${ }^{12}$ [Tao-2009]
terrytao.wordpress.com/2009/08/23/determinantal-processes/

Complementary DPPs

Lemma 9 (Hough et al-2006). Given any $\mathbf{Y} \sim \operatorname{DPP}(K)$, where K has spectral decomposition $Q \wedge Q^{*}$, sampling from \mathbf{Y} is equivalent to sampling from the random elementary DPP with kernel $P\left(Q_{\mathrm{z}}\right)$, where $P(U) \equiv U U^{*}$ and Q_{Z} consists of the columns of Q with indices from $\mathbf{Z} \sim \operatorname{DPP}(\Lambda)$.

Lemma 10. Given any $\mathbf{Y} \sim \operatorname{DPP}(K), \mathbf{Y}^{c} \sim \operatorname{DPP}(I-K)$ (which we call the complementary DPP). Proof. The case where K is elementary is proven in [Tao-2009] via showing that the squared determinants of the diagonal blocks of a 2×2 partition of an orthonormal matrix are equal. ${ }^{12}$

In the general case, if K has spectral decomposition $Q \wedge Q^{*}$, then $I-K$ has spectral decomposition $Q(I-\Lambda) Q^{*}$. And the probability of drawing J from $\operatorname{DPP}(\Lambda)$ is equal to that of drawing J^{c} from $\operatorname{DPP}(I-\Lambda)$.

The result for the elementary case then shows that, if $\mathbf{Z} \sim \operatorname{DPP}\left(Q_{\jmath} Q_{\jmath}^{*}\right)$, then $Z^{c} \sim \operatorname{DPP}\left(I-Q_{\jmath} Q_{\jmath}^{*}\right)=\operatorname{DPP}\left(Q_{\jmath c} Q_{\jmath c}^{*}\right)$. The general case then follows from Lemma 9.
${ }^{12}$ [Tao-2009]
terrytao.wordpress.com/2009/08/23/determinantal-processes/

Complementary DPPs

Lemma 9 (Hough et al-2006). Given any $\mathbf{Y} \sim \operatorname{DPP}(K)$, where K has spectral decomposition $Q \wedge Q^{*}$, sampling from \mathbf{Y} is equivalent to sampling from the random elementary DPP with kernel $P\left(Q_{z}\right)$, where $P(U) \equiv U U^{*}$ and Q_{z} consists of the columns of Q with indices from $\mathbf{Z} \sim \operatorname{DPP}(\Lambda)$.

Lemma 10. Given any $\mathbf{Y} \sim \operatorname{DPP}(K), \mathbf{Y}^{c} \sim \operatorname{DPP}(I-K)$ (which we call the complementary DPP). Proof. The case where K is elementary is proven in [Tao-2009] via showing that the squared determinants of the diagonal blocks of a 2×2 partition of an orthonormal matrix are equal. ${ }^{12}$

In the general case, if K has spectral decomposition $Q \wedge Q^{*}$, then $I-K$ has spectral decomposition $Q(I-\Lambda) Q^{*}$. And the probability of drawing J from $\operatorname{DPP}(\Lambda)$ is equal to that of drawing J^{c} from $\operatorname{DPP}(I-\Lambda)$.

The result for the elementary case then shows that, if $\mathbf{Z} \sim \operatorname{DPP}\left(Q_{J} Q_{J}^{*}\right)$, then $\mathbf{Z}^{c} \sim \operatorname{DPP}\left(I-Q_{\jmath} Q_{J}^{*}\right)=\operatorname{DPP}\left(Q_{\jmath c} Q_{\jmath c}^{*}\right)$. The general case then follows from Lemma 9. \square

[^16]
Conditioning and Schur complements

Proposition 2. Given disjoint subsets $A, B \subset \mathcal{Y}$,

$$
\begin{gathered}
P[B \subseteq \mathbf{Y} \mid A \subseteq \mathbf{Y}]=\operatorname{det}\left(K_{B}-K_{B, A} K_{A}^{-1} K_{A, B}\right), \\
P\left[B \subseteq \mathbf{Y} \mid A \subseteq \mathbf{Y}^{c}\right]=\operatorname{det}\left(K_{B}+K_{B, A}\left(I-K_{A}\right)^{-1} K_{A, B}\right) .
\end{gathered}
$$

Proof. The first claim follows from

$$
\operatorname{det}\left(K_{A \cup B}\right)=\operatorname{det}\left(K_{A}\right) \operatorname{det}\left(K_{B}-K_{B, A} K_{A}^{-1} K_{A, B}\right)
$$

$$
P[B \subseteq \mathbf{Y} \mid A \subseteq \mathbf{Y}]=\frac{\operatorname{det}\left(K_{A \cup B}\right)}{\operatorname{det}\left(K_{A}\right)}
$$

The second claim follows from applying the first result to the complementary DPP to find

$$
P\left[B \subseteq \mathbf{Y}^{c} \mid A \subseteq \mathbf{Y}^{c}\right]=\operatorname{det}\left((I-K)_{B}-K_{B, A}(I-K)_{A}^{-1} K_{A, B}\right)
$$

Taking the complement of said Schur complement shows the second result. \square

Conditioning and Schur complements

Proposition 2. Given disjoint subsets $A, B \subset \mathcal{Y}$,

$$
\begin{gathered}
P[B \subseteq \mathbf{Y} \mid A \subseteq \mathbf{Y}]=\operatorname{det}\left(K_{B}-K_{B, A} K_{A}^{-1} K_{A, B}\right), \\
P\left[B \subseteq \mathbf{Y} \mid A \subseteq \mathbf{Y}^{c}\right]=\operatorname{det}\left(K_{B}+K_{B, A}\left(I-K_{A}\right)^{-1} K_{A, B}\right) .
\end{gathered}
$$

Proof. The first claim follows from

$$
\operatorname{det}\left(K_{A \cup B}\right)=\operatorname{det}\left(K_{A}\right) \operatorname{det}\left(K_{B}-K_{B, A} K_{A}^{-1} K_{A, B}\right)
$$

and

$$
P[B \subseteq \mathbf{Y} \mid A \subseteq \mathbf{Y}]=\frac{\operatorname{det}\left(K_{A \cup B}\right)}{\operatorname{det}\left(K_{A}\right)}
$$

The second claim follows from applying the first result to the complementary DPP to find

$$
P\left[B \subseteq Y^{C} \mid A \subseteq Y^{C}\right]=\operatorname{det}\left((I-K)_{B}-K_{B, A}(I-K)_{A}^{-1} K_{A, B}\right)
$$

Taking the complement of said Schur complement shows the second result. \square

Conditioning and Schur complements

Proposition 2. Given disjoint subsets $A, B \subset \mathcal{Y}$,

$$
\begin{gathered}
P[B \subseteq \mathbf{Y} \mid A \subseteq \mathbf{Y}]=\operatorname{det}\left(K_{B}-K_{B, A} K_{A}^{-1} K_{A, B}\right), \\
P\left[B \subseteq \mathbf{Y} \mid A \subseteq \mathbf{Y}^{c}\right]=\operatorname{det}\left(K_{B}+K_{B, A}\left(I-K_{A}\right)^{-1} K_{A, B}\right) .
\end{gathered}
$$

Proof. The first claim follows from

$$
\operatorname{det}\left(K_{A \cup B}\right)=\operatorname{det}\left(K_{A}\right) \operatorname{det}\left(K_{B}-K_{B, A} K_{A}^{-1} K_{A, B}\right)
$$

and

$$
P[B \subseteq \mathbf{Y} \mid A \subseteq \mathbf{Y}]=\frac{\operatorname{det}\left(K_{A \cup B}\right)}{\operatorname{det}\left(K_{A}\right)}
$$

The second claim follows from applying the first result to the complementary DPP to find

$$
P\left[B \subseteq \mathbf{Y}^{c} \mid A \subseteq \mathbf{Y}^{c}\right]=\operatorname{det}\left((I-K)_{B}-K_{B, A}(I-K)_{A}^{-1} K_{A, B}\right)
$$

Taking the complement of said Schur complement shows the second result. \square

Sampling w/ mirror-image Cholesky

```
samples = {}
for j=1:n
    J2 = [j+1:n]
    keep_index = Bernoulli(K(j,j))
    if keep_index
        scale = -1; samples.insert(j)
        K(j,j) = sqrt(K(j,j))
    else
        scale = +1
        K(j,j) = sqrt(1-K(j,j))
    K(J2,j) /= K(j,j)
    K(J2,J2) += scale*tril(K(J2,j)*K(J2,j)')
```

This is a small tweak of unblocked Cholesky factorization; the majority of the work is in Hermitian rank-1 updates. And the standard Cholesky optimizations apply (e.g., blocking and sparse-direct factorization)!

Sampling w/ mirror-image Cholesky

```
samples = {}
for j=1:n
    J2 = [j+1:n]
    keep_index = Bernoulli(K(j,j))
    if keep_index
        scale = -1; samples.insert(j)
        K(j,j) = sqrt(K(j,j))
    else
        scale = +1
        K(j,j) = sqrt(1-K(j,j))
    K(J2,j) /= K(j,j)
    K(J2,J2) += scale*tril(K(J2,j)*K(J2,j)')
```

This is a small tweak of unblocked Cholesky factorization; the majority of the work is in Hermitian rank-1 updates. And the standard Cholesky optimizations apply (e.g., blocking and sparse-direct factorization)!

Blocked mirror-image sampling

```
samples = {}
J1_beg = 1
while J1_beg <= n
    J1_end = min(n, J1_beg+blocksize-1)
    J1 = [J1_beg:J1_end]; J2 = [J1_end+1:n]
    J1_samples, K(J1,J1) = sample(K(J1,J1))
    A21 = zeros(len(J2), len(J1_samples))
    B21 = zeros(len(J2), len(J1)-len(J1_samples))
    num_keep_packed = num_drop_packed = 0
    for k in J1
    K(J2,k) /= K(k,k)
        if (k-J1_beg+1) in J1_samples
        A21(:,num_keep_packed++) = K(J2,k); scale = -1
        else
        B21(:, num_drop_packed++) = K(J2,k); scale = +1
        J1R = [k+1:J1_end]
    K(J2,J1R) += scale*K(J2,k)*K(J1R,k)'
    K(J2,J2) += tril(B21*B21' - A21*A21')
    J1_beg = J1_end + 1
```


Dense single-core "Cholesky" sampling

HPC dense Cholesky implementations can be trivially modified.
Maximum Likelihood inference and elementary DPP sampling are similar but involve diagonal pivoting; the former uses the largest diagonal and the latter samples from the PDF implied by the diagonal. One can modify a blocked dense diagonally-pivoted Cholesky.

Sparse-direct Cholesky can be adapted for sampling a marginal kernel, but arbitrary nivoting can destroy its advantages for MAP and elementary DPPs.

Dense single-core "Cholesky" sampling

HPC dense Cholesky implementations can be trivially modified.
Maximum Likelihood inference and elementary DPP sampling are similar but involve diagonal pivoting; the former uses the largest diagonal and the latter samples from the PDF implied by the diagonal. One can modify a blocked dense diagonally-pivoted Cholesky.

Sparse-direct Cholesky can be adapted for sampling a marginal kernel, but arbitrary nivoting can destroy its advantages for MAP and elementary DPPs.

Dense single-core "Cholesky" sampling

HPC dense Cholesky implementations can be trivially modified.
Maximum Likelihood inference and elementary DPP sampling are similar but involve diagonal pivoting; the former uses the largest diagonal and the latter samples from the PDF implied by the diagonal. One can modify a blocked dense diagonally-pivoted Cholesky.

Sparse-direct Cholesky can be adapted for sampling a marginal kernel, but arbitrary nivoting can destroy its advantages for MAP and elementary DPPs.

Dense single-core "Cholesky" sampling

HPC dense Cholesky implementations can be trivially modified.
Maximum Likelihood inference and elementary DPP sampling are similar but involve diagonal pivoting; the former uses the largest diagonal and the latter samples from the PDF implied by the diagonal. One can modify a blocked dense diagonally-pivoted Cholesky.

Sparse-direct Cholesky can be adapted for sampling a marginal kernel, but arbitrary pivoting can destroy its advantages for MAP and elementary DPPs.

Acknowledgements/Questions/Comments

Acknowledgements:

- Rasmus Larsen and John Anderson:

For introducing me to the WALS problem.

- Steffen Rendle:

For noticing that the Gramians were equal.

- Matt Knepley and Sameer Agarwal:

For pointing out the gauge transformation analogy.

- Alex Kulesza and Jenny Gillenwater:

For answering DPP sampling questions.

Questions/comments?

[^0]: Weighted low-rank approximations
 ${ }^{3}$ http://www.tensorflow.org/api_docs/python/tf/contrib/

[^1]: ${ }^{1}$ See, for example, [Hu et al.-2008] Collaborative filtering for implicit feedback datasets
 ${ }^{2}$ Cf. [Srebro/Jaakkola-2003] Weighted low-rank approximations

[^2]: ${ }^{1}$ See, for example, [Hu et al.-2008] Collaborative filtering for implicit feedback datasets
 ${ }^{2}$ Cf. [Srebro/Jaakkola-2003] Weighted low-rank approximations
 ${ }^{3}$ http://www.tensorflow.org/api_docs/python/tf/contrib/ factorization/WALSModel

[^3]: ${ }^{1}$ See, for example, [Hu et al.-2008] Collaborative filtering for implicit feedback datasets
 ${ }^{2}$ Cf. [Srebro/Jaakkola-2003] Weighted low-rank approximations
 ${ }^{3}$ http://www.tensorflow.org/api_docs/python/tf/contrib/ factorization/WALSModel

[^4]: ${ }^{4}$ [Anderson/Trapp-1980] Operator means and electrical networks, Cf. [Bhatia-2007] Positive Definite Matrices
 ${ }^{5}$ [Nesterov/Todd-1998] Primal-Dual Interior Point Methods for self-scaled

[^5]: ${ }^{4}$ [Anderson/Trapp-1980] Operator means and electrical networks, Cf. [Bhatia-2007] Positive Definite Matrices

[^6]: ${ }^{4}$ [Anderson/Trapp-1980] Operator means and electrical networks, Cf. [Bhatia-2007] Positive Definite Matrices
 ${ }^{5}$ [Nesterov/Todd-1998] Primal-Dual Interior Point Methods for self-scaled cones

[^7]: But sequential continuity is violated:

[^8]: ${ }^{6}$ [Faraut/Koranyi-1998] Analysis on Symmetric Cones.
 ${ }^{7}$ [Faybusovich-1997] Euclidean Jordan Algebras and Interior-point Alg's
 ${ }^{8}$ [Lim-2000] Geometric means on symmetric cones

[^9]: ${ }^{6}$ [Faraut/Koranyi-1998] Analysis on Symmetric Cones.

[^10]: ${ }^{6}$ [Faraut/Koranyi-1998] Analysis on Symmetric Cones.

[^11]: ${ }^{6}$ [Faraut/Koranyi-1998] Analysis on Symmetric Cones.
 ${ }^{7}$ [Faybusovich-1997] Euclidean Jordan Algebras and Interior-point Alg's

[^12]: ${ }^{6}$ [Faraut/Koranyi-1998] Analysis on Symmetric Cones.
 ${ }^{7}$ [Faybusovich-1997] Euclidean Jordan Algebras and Interior-point Alg's
 ${ }^{8}$ [Lim-2000] Geometric means on symmetric cones

[^13]: ${ }^{9}$ [Hough et al.-2006] Determinantal point processes and independence, Cf. [Kulesza/Taskar-2012] Determinantal point processes for machine learning.
 ${ }^{10}$ [Gillenwater-2014] Approximate inference for determinantal point processes
 ${ }^{11}$ [Chen et al.-2017] Fast Greedy MAP inference for Determinantal Point Processes, [Launay et al.-2018] Exact sampling of determinantal point processes without eigendecomposition

[^14]: ${ }^{9}$ [Hough et al.-2006] Determinantal point processes and independence, Cf. [Kulesza/Taskar-2012] Determinantal point processes for machine learning.
 ${ }^{10}$ [Gillenwater-2014] Approximate inference for determinantal point processes
 ${ }^{11}$ [Chen et al.-2017] Fast Greedy MAP inference for Determinantal Point Processes, [Launay et al.-2018] Exact sampling of determinantal point processes without eigendecomposition

[^15]: terrytao. wordpress.com/2009/08/23/determinantal-processes/

[^16]: 12 [Tao-2009]
 terrytao.wordpress.com/2009/08/23/determinantal-processes/

