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Overview

@ Equilibrating low-rank approximations with Gaussian priors

@® High-performance finite DPP sampling via mirror-image Cholesky
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Motivation for analyzing equilibration

Recommender systems and language models often involve low-rank
approximations of a large, sparse matrix A, e.g., a local minimum of:

1 , A
£ Y) = SIW o (A= XY+ 5 (IXIE+IYIE) .

where W is a weighting matrix (often a function of A).!

!See, for example, [Hu et al.-2008] Collaborative filtering for implicit
feedback datasets
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1 . A
£ Y) = SIW o (A= XY+ 5 (IXIE+IYIE) .
where W is a weighting matrix (often a function of A).!

This is Maximum Likelihood inference with (XY™*);; ~ N'(A;;, VVJZ) and
priors Xij, Yij ~ N(0,1/)).2

!See, for example, [Hu et al.-2008] Collaborative filtering for implicit

feedback datasets
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approximations of a large, sparse matrix A, e.g., a local minimum of:

1 . A
£ Y) = SIW o (A= XY+ 5 (IXIE+IYIE) .
where W is a weighting matrix (often a function of A).!
This is Maximum Likelihood inference with (XY™);; ~ N(A;}, VVJZ) and
priors X; j, Yij ~ N(0,1/)).2

One can find an approximate local minimum via a few iterations of Weighted
Alternating Least Squares.®

!See, for example, [Hu et al.-2008] Collaborative filtering for implicit
feedback datasets

2Cf. [Srebro/Jaakkola-2003] Weighted low-rank approximations
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Motivation for analyzing equilibration

Recommender systems and language models often involve low-rank
approximations of a large, sparse matrix A, e.g., a local minimum of:

1 X A
£ Y) = SIW o (A= XY+ 5 (IXIE+IYIE) .
where W is a weighting matrix (often a function of A).!
This is Maximum Likelihood inference with (XY™);; ~ N(A;}, ijz) and
priors X;;, Yij ~ N(0,1/)).
One can find an approximate local minimum via a few iterations of Weighted

Alternating Least Squares.®

A colleague (Steffen Rendle) observed that results for his model satisfied

X*X = Y*Y. How do we prove (and exploit) this property?

!See, for example, [Hu et al.-2008] Collaborative filtering for implicit
feedback datasets

2Cf. [Srebro/Jaakkola-2003] Weighted low-rank approximations

*http://www.tensorflow.org/api_docs/python/tf/contrib/
factorization/WALSModel
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Why the Gramians are equivalent [1/3]

Definition 1. Given S € Sym(n,R), we will use the shorthand P(S) for the
linear operator P(S) : Sym(n,R) — Sym(n,R) via P(S)A = SAS.
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Definition 2. The geometric mean of A,B € 57 is
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*[Anderson/Trapp-1980] Operator means and electrical networks, Cf.
[Bhatia-2007] Positive Definite Matrices
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Definition 1. Given S € Sym(n,R), we will use the shorthand P(S) for the
linear operator P(S) : Sym(n,R) — Sym(n,R) via P(S)A = SAS.

Definition 2. The geometric mean of A,B € 57 is
At B =Bt A= P(AY?)(P(A~Y?)B)Y/2,

Proposition 1. For any A, B € S, there is a unique S € S}, such that
P(S)A=B"*
Proof. For existence, put S = A1 4 B.

*[Anderson/Trapp-1980] Operator means and electrical networks, Cf.
[Bhatia-2007] Positive Definite Matrices
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linear operator P(S) : Sym(n,R) — Sym(n,R) via P(S)A = SAS.

Definition 2. The geometric mean of A,B € 57 is
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Proposition 1. For any A, B € S, there is a unique S € S}, such that
P(S)A=B"*

Proof. For existence, put S = A"'§B.

For uniqueness, if P(S)A = P(T)A, then X*AX = A, with X = T™!S. Then
the spectral decomposition (S¥/2T~15%/2)(§Y2Z7) = (5'/2Z)A implies
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Why the Gramians are equivalent [1/3]

Definition 1. Given S € Sym(n,R), we will use the shorthand P(S) for the
linear operator P(S) : Sym(n,R) — Sym(n,R) via P(S)A = SAS.

Definition 2. The geometric mean of A,B € 57 is
AfB=BfA=P(AYV?)(P(A"?)B)"/2.

Proposition 1. For any A, B € S, there is a unique S € S}, such that
P(S)A=B"*

Proof. For existence, put S = A"'§B.

For uniqueness, if P(S)A = P(T)A, then X*AX = A, with X = T™!S. Then
the spectral decomposition (S¥/2T~15%/2)(§Y2Z7) = (5'/2Z)A implies

XZ =ZN AN >0. And Z*AZ = Z*(X*AX)Z = NZ*AZA, so A =] and
T=S501

Definition 3. The Nesterov-Todd scaling point of A, B € S, is
P(SY?)A = P(57/2)B, where S = A" 4 B.5

*[Anderson/Trapp-1980] Operator means and electrical networks, Cf.
[Bhatia-2007] Positive Definite Matrices

®[Nesterov/Todd-1998] Primal-Dual Interior Point Methods for self-scaled
cones
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Why the Gramians are equivalent [2/3]

Lemma 4 (P.). Given (X,Y) e R™ x R™", S € ST, minimizes
f:5!, — Ry, where

£(S) = IXSIIF + 11 YS™"7,

P(S)(X*X) = P(S™H(Y*Y). And, if X and Y have full column rank, then
S=((X*X)"14(Y*Y))2 is the unique minimizer.
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Why the Gramians are equivalent [2/3]

Lemma 4 (P.). Given (X,Y) e R™ x R™", S € ST, minimizes
f:5!, — Ry, where

£(S) = IXSIIF + 11 YS™"7,

iff P(S)(X*X) = P(S7')(Y"Y). And, if X and Y have full column rank, then
S=((X*X)"14(Y*Y))2 is the unique minimizer.

Proof. Decompose f as g o h, where h: ST, — ST, via h(S) = S? and
g:57, > Ryviag(T)=(X*X, )+ (Y'Y, T,

Then h is a diffeomorphism and dgr : (T751; = Sym(n,R)) — (TynR = R)
via dgr(dT) = (X*X — T7LY* YT~ dT).

So S € S, is a critical point of f iff dfs = dgs2 o dhs = 0 iff

X*X —-S7?y*ys?=0. O

5/20



Why the Gramians are equivalent [3/3]

Theorem 5 (P.). If £: R™*" — R is continuous, the local minima of
L R™ x R™" — R, where

wy L A
£, )= xy*)+ 5 (IXIE + Y1),
satisfy X*X = Y*Y. And, given any candidate (X, Y), the equilibration,

(XS*2,YS~/2), where S = (X*X)~1#(Y*Y), minimizes the regularization
while preserving the input to /.
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Theorem 5 (P.). If £: R™*" — R is continuous, the local minima of
L R™ x R™" — R, where

, A
£, )= xy*)+ 5 (IXIE + Y1),

satisfy X*X = Y*Y. And, given any candidate (X, Y), the equilibration,
(XS2,YS~1/2), where S = (X*X)~1#(Y*Y), minimizes the regularization
while preserving the input to /.

Proof. Given (X, Y), £(XY™) is invariant under any transformation

(X,Y) s (XZ, YZ~*) where Z € GL(n,R).

Thus, any local minimum must satisfy

X2 + || Y|? i XZ|? YZ~*||2
(IXIIE + Yl rng(ng){H Iz + I Iz}

Ze
in {IXS|2 +||YS%Y,
Sgg&{ll I+l =}

where we exploited the polar decomposition Z = SQ, Q unitary.
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Theorem 5 (P.). If £: R™*" — R is continuous, the local minima of
L R™ x R™" — R, where

, A
£, )= xy*)+ 5 (IXIE + Y1),

satisfy X*X = Y*Y. And, given any candidate (X, Y), the equilibration,
(XS2,YS~1/2), where S = (X*X)~1#(Y*Y), minimizes the regularization
while preserving the input to /.

Proof. Given (X, Y), £(XY™) is invariant under any transformation

(X,Y) s (XZ, YZ~*) where Z € GL(n,R).

Thus, any local minimum must satisfy

X2 + || Y|? i XZ|? YZ~*||2
(IXIIE + Yl rng(ng){H Iz + I Iz}

Ze
in {IXS|2 +||YS%Y,
Sgg&{ll I+l =}

where we exploited the polar decomposition Z = SQ, Q unitary. The result

then follows from our lemma. ]
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Equilibrating block coordinate descent

Given N
£0,¥) = 6xv*) + 5 (IXIF + 1 Y1)

insert an equilibration step between each block coordinate descent step. E.g., if
X and Y have full column rank, replace

(X, Y) = (XSY2, vs7V2) s = (X*X) 1 (Y'Y),

which can be computed in O((m + n + r)r?) time.
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(X, Y) = (XS"2,¥S7H2), s = (X" X) (YY),
which can be computed in O((m + n + r)r?) time.

Equilibration is essentially free and keeps the regularization minimized (with the
constraint of preserving the loss function input).
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Equilibrating block coordinate descent

Given N
£06,Y) = 6xv*)+ 5 (IXIE + 1 YIIF)

insert an equilibration step between each block coordinate descent step. E.g., if
X and Y have full column rank, replace

(X, Y) = (XS"2,¥S7H2), s = (X" X) (YY),
which can be computed in O((m + n + r)r?) time.

Equilibration is essentially free and keeps the regularization minimized (with the
constraint of preserving the loss function input).

If one thinks of (X*X, YY) as analogous to a primal/dual pair in an SDP
IPM, this is similar to centering the Newton step about the NT point.
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Equilibrating block coordinate descent

Given N
£06,Y) = 6xv*)+ 5 (IXIE + 1 YIIF)

insert an equilibration step between each block coordinate descent step. E.g., if
X and Y have full column rank, replace

(X, Y) = (XS"2,¥S7H2), s = (X" X) (YY),
which can be computed in O((m + n + r)r?) time.

Equilibration is essentially free and keeps the regularization minimized (with the
constraint of preserving the loss function input).

If one thinks of (X*X, YY) as analogous to a primal/dual pair in an SDP
IPM, this is similar to centering the Newton step about the NT point.

Equilibration has a much more pronounced effect for small regularization

values.
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A trivial example

Consider minimizing (o — x1)? + A\(x? + 7?) given a = 1,
A =0.001, xo =19 = 2.

—e— Unequilibrated
—— Equilibrated

log-loss

iteration



Handling ill-conditioned Gramians [1/2]

The Nesterov-Todd equilibration obviously makes assumptions about the
invertibility of the Gramians.
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The Nesterov-Todd equilibration obviously makes assumptions about the
invertibility of the Gramians.

Geometrically, S = A# B, when A, B € S, is well-known to be the Euclidean
midpoint between log(A) and log(B) and the midpoint of the geodesic between
A and B when S, is equipped with the left-invariant metric

gx(S, T) = (X', X71T).
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The Nesterov-Todd equilibration obviously makes assumptions about the
invertibility of the Gramians.

Geometrically, S = A# B, when A, B € S, is well-known to be the Euclidean
midpoint between log(A) and log(B) and the midpoint of the geodesic between
A and B when S, is equipped with the left-invariant metric

gx(S, T) = (X', X71T).

One could extend the geometric mean to the boundary via:

ALB =lim(A+el)§ (B +cl).

But this extension is discontinuous [Bhatia-2007]: Let

(o 8= (F oo ) -x= (6 3)

Then, for ®,(A) = X AX,, d,(A)#®,(B) = d,(AtB).
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Handling ill-conditioned Gramians [1/2]

The Nesterov-Todd equilibration obviously makes assumptions about the
invertibility of the Gramians.

Geometrically, S = Af B, when A, B € S, is well-known to be the Euclidean
midpoint between log(A) and log(B) and the midpoint of the geodesic between

A and B when S, is equipped with the left-invariant metric
gx(S, T) = (X', X71T).

One could extend the geometric mean to the boundary via:
AfB = IiH)\(A +e)t(B+el).
But this extension is discontinuous [Bhatia-2007]: Let
4 0 20 6 1 0 10
A= o 2)2= (5 )%= o 10) X0 o)
Then, for ®,(A) = X;AX,, ®,(A)fP.(B) = ¢,(AfB).
But sequential continuity is violated:

lim ©n(A) £ ©o(B) = lim ®4(A% B) = ®(A} B) = ( )

(JiTT()d),,(A)) 4 (JITTO %(B)) — O(A)Ed(B) = <\Oﬁ 8)
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Handling ill-conditioned Gramians [2/2]

We thus saw that the extension:
A B = Ii$(A+el)ﬁ(B+el)

can lead to singular geometric means (in addition to being discontinuous).
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Handling ill-conditioned Gramians [2/2]

We thus saw that the extension:
A B = |i£rg(A—|—e/)ﬁ(B+6/)

can lead to singular geometric means (in addition to being discontinuous).

But if we only care about backwards stability, then there is no issue. One can

—_—1 — A
compute S = X*X #§Y*Y, where Z = Z + || Z||r for some o < 1,
equilibrate with S, and perhaps repeat.
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Handling ill-conditioned Gramians [2/2]

We thus saw that the extension:

ALB =lim(A+el)t (B +el)

can lead to singular geometric means (in addition to being discontinuous).

But if we only care about backwards stability, then there is no issue. One can

—_—1 — A
compute S = X*X #§Y*Y, where Z = Z + || Z||r for some o < 1,
equilibrate with S, and perhaps repeat.

This extends the applicability from S7, to ST \ {0}.

10/20



Another toy example
Consider minimizing ||A — XY*||Z + A(||[ X||% + || Y|%). given
A = randn(200, 400), A = 0.1, Xo = randn(200, 10),
Yo = [randn(400, 9), zeros(400, 1)].

10.52 7 I I
—— Unequilibrated
—— Equilibrated
@ 10.5 |~ —
10.48 |~ —
50

0 10 20 30 40

iteration
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Jordan-algebraic interpretations

Recall our definition P(S) : Sym(n,R) — Sym(n,R) via P(S)A = SAS.
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Jordan-algebraic interpretations

Recall our definition P(S) : Sym(n,R) — Sym(n,R) via P(S)A = SAS.

This is a special case of the quadratic representation of a Jordan algebra V/,
where P(x) = 2L(x)? — L(x*) and L(x) : V — V is left application of x € V.°

®[Faraut/Koranyi-1998] Analysis on Symmetric Cones.
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This is a special case of the quadratic representation of a Jordan algebra V/,
where P(x) = 2L(x)? — L(x*) and L(x) : V — V is left application of x € V.°

For V = Sym(n,R) with Jordan product Ao B = 1(AB+ BA), L(A)B = Ao B:
P(A)B =2(Ao (Ao B)) — A’ o B = ABA.

The 1-to-1 correspondence between symmetric cones and squares of Euclidean
Jordan algebras [Faraut/Koranyi-1998] is commonly exploited in Interior Point
Methods (especially for Lorentz cones).”

®[Faraut/Koranyi-1998] Analysis on Symmetric Cones.
"[Faybusovich-1997] Euclidean Jordan Algebras and Interior-point Alg’s
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Jordan-algebraic interpretations

Recall our definition P(S) : Sym(n,R) — Sym(n,R) via P(S)A = SAS.

This is a special case of the quadratic representation of a Jordan algebra V/,
where P(x) = 2L(x)? — L(x*) and L(x) : V — V is left application of x € V.°

For V = Sym(n,R) with Jordan product Ao B = 1(AB+ BA), L(A)B = Ao B:
P(A)B =2(Ao (Ao B)) — A’ o B = ABA.

The 1-to-1 correspondence between symmetric cones and squares of Euclidean
Jordan algebras [Faraut/Koranyi-1998] is commonly exploited in Interior Point
Methods (especially for Lorentz cones).”

One can easily build on Prop’n 1 to show: given A, B € int(V?), there is a
unique S € int(V?) such that P(S)A = B.® The definitions of geometric

means and Nesterov-Todd scaling points carry over through usage of P.

®[Faraut/Koranyi-1998] Analysis on Symmetric Cones.
"[Faybusovich-1997] Euclidean Jordan Algebras and Interior-point Alg’s

8[Lim-2000] Geometric means on symmetric cones
12/20



Determinantal Point Processes

Definition 6. A marginal kernel matrix is a (real or complex) Hermitian
matrix whose eigenvalues live in [0, 1].
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Determinantal Point Processes

Definition 6. A marginal kernel matrix is a (real or complex) Hermitian
matrix whose eigenvalues live in [0, 1].

Definition 7. A (finite) Determinantal Point Process (DPP) is a random
variable Y over the power set of Y = {1, ..., k} C N generated by a k x k
marginal kernel matrix K via the rule

PK[Y - Y] = det(Ky),

where Ky is the |Y]| X | Y| submatrix of K formed by restricting to the rows
and columns in the index set Y.
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Determinantal Point Processes

Definition 6. A marginal kernel matrix is a (real or complex) Hermitian
matrix whose eigenvalues live in [0, 1].

Definition 7. A (finite) Determinantal Point Process (DPP) is a random
variable Y over the power set of Y = {1, ..., k} C N generated by a k x k
marginal kernel matrix K via the rule

PK[Y - Y] = det(Ky),

where Ky is the |Y]| X | Y| submatrix of K formed by restricting to the rows
and columns in the index set Y.

Definition 8. A DPP is called elementary if the eigenvalues of its marginal

kernel matrix are all either 0 or 1.
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How to sample a DPP?

Traditional algorithms [Hough et al.-2006] used an eigendecomposition of the
kernel matrix and transformed the eigenvalues their Bernoulli draw to reduce to
an elementary DPP (which was then sampled with a quartic algorithm).®

9[Hough et al.-2006] Determinantal point processes and independence, Cf.
[Kulesza/Taskar-2012] Determinantal point processes for machine learning.
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Traditional algorithms [Hough et al.-2006] used an eigendecomposition of the
kernel matrix and transformed the eigenvalues their Bernoulli draw to reduce to
an elementary DPP (which was then sampled with a quartic algorithm).®

[Gillenwater-2014] reduced the factored elementary DPP sampling down to
cubic complexity via what is equivalent to diagonally-pivoted Cholesky.*

Recently, authors are noticing the connections to Cholesky factorization for
MAP inference and directly sampling from the marginal kernel. !

| will give a simple proof of a cubic Cholesky-like algorithm for directly sampling

from a marginal kernel and provide a high-performance blocked equivalent.

9[Hough et al.-2006] Determinantal point processes and independence, Cf.
[Kulesza/Taskar-2012] Determinantal point processes for machine learning.

10[Gillenwater-2014] Approximate inference for determinantal point processes

[Chen et al.-2017] Fast Greedy MAP inference for Determinantal Point
Processes, [Launay et al.-2018] Exact sampling of determinantal point
processes without eigendecomposition
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Complementary DPPs

Lemma 9 (Hough et al-2006). Given any Y ~ DPP(K), where K has
spectral decomposition QAQ*, sampling from Y is equivalent to sampling from
the random elementary DPP with kernel P(Qz), where P(U) = UU* and Q2
consists of the columns of Q with indices from Z ~ DPP(A).
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Complementary DPPs

Lemma 9 (Hough et al-2006). Given any Y ~ DPP(K), where K has
spectral decomposition QAQ*, sampling from Y is equivalent to sampling from
the random elementary DPP with kernel P(Qz), where P(U) = UU* and Q2
consists of the columns of Q with indices from Z ~ DPP(A).

Lemma 10. Given any Y ~ DPP(K), Y ~ DPP(/ — K) (which we call the
complementary DPP). Proof. The case where K is elementary is proven in
[Tao-2009] via showing that the squared determinants of the diagonal blocks of
a 2x2 partition of an orthonormal matrix are equal.’

In the general case, if K has spectral decomposition QAQ™, then | — K has
spectral decomposition Q(/ — A)Q*. And the probability of drawing J from
DPP(A) is equal to that of drawing J from DPP(/ — A).

The result for the elementary case then shows that, if Z ~ DPP(Q,Q7J), then
Z° ~ DPP(l — Q;Q)) = DPP(Q,cQJc). The general case then follows from
Lemma 9. [J

12[Ta0-2009]
terrytao.wordpress.com/2009/08/23/determinantal-processes/
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Conditioning and Schur complements

Proposition 2. Given disjoint subsets A, B C ),
P[B C Y|AC Y] =det(Ks — Kz.aK, 'Kag),

P[B C Y|AC Y] =det(Ks + Kp.a(l — Ka) 'Kag).

16 /20



Conditioning and Schur complements

Proposition 2. Given disjoint subsets A, B C ),
P[B C Y|AC Y] =det(Ks — Kz.aK, 'Kag),
P[B C Y|AC Y] =det(Ks + Kp.a(l — Ka) 'Kag).
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and
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Proposition 2. Given disjoint subsets A, B C ),
P[B C Y|AC Y] =det(Ks — Kz.aK, 'Kag),

P[B C Y|AC Y] =det(Ks + Kp.a(l — Ka) 'Kag).
Proof. The first claim follows from
det(Kaug) = det(Ka)det(Ks — Kg.aK, 'Kag)
and

det(KAug)

P[BCYIACY]= AR

The second claim follows from applying the first result to the complementary
DPP to find

P[BC Y AC Y] =det((| — K)g — Kp.a(l — K)5'Kas).

Taking the complement of said Schur complement shows the second result. [J
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Sampling w/ mirror-image Cholesky

samples = {}

for j=1:mn
J2 = [j+1:n]
keep_index = Bernoulli(K(j,j))
if keep_index

scale = -1; samples.insert(j)
K(j,j) = sqrt(K(j,j))

else
scale = +1

K(j,j) = sqrt(1-K(j,j))
K(J2,3) /= K(j,j)

K(J2,J2) += scalextril(K(J2,j)*K(J2,3))
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if keep_index

scale = -1; samples.insert(j)
K(j,j) = sqrt(K(j,j))

else
scale = +1

K(j,j) = sqrt(1-K(j,j))
K(J2,3) /= K(j,j)

K(J2,J2) += scalextril(K(J2,j)*K(J2,3))

This is a small tweak of unblocked Cholesky factorization; the majority of the
work is in Hermitian rank-1 updates. And the standard Cholesky optimizations

apply (e.g., blocking and sparse-direct factorization)!
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Blocked mirror-image sampling

samples = {}
Ji_beg = 1
while J1_beg <= n
Ji_end = min(n, J1_beg+blocksize-1)
J1 = [J1_beg:J1_end]; J2 = [J1_end+1:n]
J1_samples, K(J1,J1) = sample(K(J1,J1))
A21 = zeros(len(J2), len(J1l_samples))
B21 = zeros(len(J2), len(J1)-len(J1l_samples))
num_keep_packed = num_drop_packed = 0
for k¥ in J1
K(J2,k) /= K(k,k)
if (k-J1_beg+1l) in J1_samples
A21(:,num_keep_packed++) = K(J2,k); scale =
else
B21(: ,num_drop_packed++) = K(J2,k); scale =
J1R = [k+1:J1_end]
K(J2,J1R) += scalexK(J2,k)*K(J1R,k)’
K(J2,J2) += tril(B21xB21’ - A21*A21°)
J1i_beg = Jl_end + 1

+1
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Dense single-core “Cholesky” sampling
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HPC dense Cholesky implementations can be trivially modified.
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HPC dense Cholesky implementations can be trivially modified.

Maximum Likelihood inference and elementary DPP sampling are similar but
involve diagonal pivoting; the former uses the largest diagonal and the latter
samples from the PDF implied by the diagonal. One can modify a blocked
dense diagonally-pivoted Cholesky.
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HPC dense Cholesky implementations can be trivially modified.

Maximum Likelihood inference and elementary DPP sampling are similar but
involve diagonal pivoting; the former uses the largest diagonal and the latter
samples from the PDF implied by the diagonal. One can modify a blocked
dense diagonally-pivoted Cholesky.

Sparse-direct Cholesky can be adapted for sampling a marginal kernel, but

arbitrary pivoting can destroy its advantages for MAP and elementary DPPs.
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