
Stefano de Gironcoli
Scuola Internazionale Superiore di Studi Avanzati

Trieste-Italy

Comparing the Efficiency of
Iterative Eigenvalue Solvers:

 the Quantum ESPRESSO

experience

0

Diagonalization of the Kohn-Sham hamiltonian is a major step
in the scf solution of any electronic sctructure system

A number of methods to perform this task are currently used
and new ones may be suggested that have advantages in terms
of stability, scalability, memory efficiency, ...

● Davidson
● band-by-band Conjugate Gradient
● Projected Preconditioned CG
● Parallel Orbital-update
● …

Efficiency of the solver depends on implementation details

it is not easy to develop new methods without good knowledge
of the underlying code and its datastructure.

1

http://www.quantum-espresso.org/
2

In pw.x of Quantum ESPRESSO two methods are implemented:

●Davidson diagonalization
-efficient in terms of number of Hpsi required
-memory intensive: requires a work space up to
 (1+3*david) * nbnd * npwx
 and diagonalization of matrices up to
 david*nbnd x david*nbnd
 where david is by default 4, but can be reduced to 2

●Conjugate Gradient
-memory friendly: bands are dealt with one at a time.
-the need to orthogonalize to lower states makes it intrinsically
 sequential and not efficient for large systems.

3

elk

4

ESLW_Drivers

10-21 July 2017 @ICTP

Volker Blum - ELSI Viktor Yu - ELSI

William Huhn – ELSI David Lopez - Siesta

Yann Pouillon – Abinit Micael Oliveira – Octopus & Abinit

Fabiano Corsetti – Siesta & Onetep Paolo Giannozzi – QE

Anoop Chandran - QE Pietro Delugas - QE

Ivan Carnimeo – QE Emine Kucukbenli - QE

Layla Martin-Samos – QE Stefano de Gironcoli - QE

5

The two main iterative eigensolvers employed in the pw.x code of the
Quantum ESPRESSO distribution were completely disentangled from
the rest of the code. The solvers make use of the Linear Algebra
domain-specific library LAXlib, developed within the MaX CoE, which is
interfaced with ELPA and ScalaPack.

Solvers exploit MPI parallelization and in addition to basis-set
component distribution, a parallelization over target states is possible,
as well as a specific parallelization for the dense linear algebra.

Generic k-point as well as Gamma specific versions of the solvers are
included. The Reverse Communication Interface (RCI) paradigm,
allowing for a complete abstraction from the basis type and the
interface used to perform the matrix-vector operations, has also been
implemented for one of the solvers.

A toy code implementing the Cohen-Bergstresser empirical
pseudopotential method is included to exemplify the use of the solvers
and allow a test of their functionalities. It uses FFTXlib from MaX CoE.

The software developed during the Workshop is hosted by the e-cam
gitlab server in Lausanne as a public sub-project of the ESL initiative
 (gitlab.e-cam2020/esl/ESLW_Drivers).
 6

https://gitlab.e-cam2020.eu/esl/ESLW_Drivers

CB_toy_code/Doc Phys.Rev. 141, 789 (1966)
 /examples contains inputs and ref. outputs
 /src contains simple code mains
FFTXlib fft library used by CB_toy_code
KS_Solvers/CG band-by-band CG
 /Davidson Davidson iterative diagonalization
LAXlib linear algebra library (int w ELPA)
UtilXlib basic utilities (error,timinig,para)
archive library archive (lapack source)
clib c timing routine
include
install configure, makedeps
Makefile
configure

7

https://gitlab.e-cam2020.eu/esl/ESLW_Drivers

https://gitlab.e-cam2020.eu/esl/ESLW_Drivers

CB_toy_code/Doc Phys.Rev. 141, 789 (1966)
 /examples contains inputs and ref. outputs
 /src contains simple code mains
FFTXlib fft library used by CB_toy_code
KS_Solvers/CG band-by-band CG
 /Davidson Davidson iterative diagonalization
 /Davidson_RCI Reverse Comm Interf version
 /ParO Parallel Orbital-updating
 /PPCG Projected Preconditioned CG
LAXlib linear algebra library (int w ELPA)
UtilXlib basic utilities (error,timinig,para)
archive library archive (lapack source)
clib c timing routine
include
install configure, makedeps
Makefile
configure

8

https://gitlab.e-cam2020.eu/esl/ESLW_Drivers

Conjugate Gradient

●For each band, given a trial eigenpair:

●Minimize the single particle energy

by (pre-conditioned) CG method

subject to the constraints

●Repeat for next band until completed

9

●Conjugate gradient
-memory friendly: bands are dealt with one at a time.
-the need to orthogonalize to lower states makes it intrinsically
 sequential and not efficient for large systems.

●routines

- rcgdiagg , ccgdiagg real/cmplx CG diagonalization generalized

- rotate_wfc_gamma, rotate_wfc_k real/cmplx initial diag

- h_1psi, s_1psi

 * preconditioning

10

Davidson Diagoalization

●Given trial eigenpairs:
●Eigenpairs of the reduced Hamiltonian

●Diagonalize the small 2nbnd x 2nbnd reduced
Hamiltonian to get the new estimate for the eigenpairs

●Repeat if needed in order to improve the solution
→ 3nbnd x 3nbnd → 4nbnd x 4nbnd … → nbnd x nbnd

●Build the correction vectors

●Build an extended reduced Hamiltonian

11

●Davidson diagonalization
-efficient in terms of number of Hpsi required
-memory intensive: requires a work space up to
 (1+3*david) * nbnd * npwx
 and diagonalization of matrices up to
 david*nbnd x david*nbnd
 where david is by default 4, but can be reduced to 2

●routines

- regterg , cegterg real/cmplx eigen iterative generalized

- h_psi, s_psi, g_psi

- rdiaghg, cdiaghg real/cmplx diagonalization H generalized

12

PPCG – Projected Preconditioned Conjugate Gradient
E. Vecharynski, C. Yang, J.E. Pask, J. Comp.Phys. 290,73 (2015)

each band (or small group of bands) is updated by diagonalizing
a small 3*blksize x 3*blksize matrix built from the current X,
the orthogonal residual and the orthogonal conjugate direction

13

● PPCG work in progress

●-memory friendly: bands are dealt with a small block at a time.
●-global calls to h_psi give opportunity for band parallelization
(not working properly yet)

●-each block can be dealt with independently (parallelization)
●-most operations on arrays use efficient BLAS3 calls (DGEMM)

●routines

- ppcg, real PPCG, cmplx version presently not available

- rotate_wfc_gamma, real initial diag (the same as CG)

- h_psi, (s_psi) generalized algorithm not available yet

 * preconditioning
14

 arXiv:1510.07230v1 [math.NA] 25/10/2015

 arXiv:1405.0260v2 [math.NA] 20/11/2014

Some recent work on an alternative iterative methods

15

ParO : Parallel Orbital-updating method in a nutshell

●Solve in parallel the nbnd linear systems

●Given trial eigenpairs:

●Build the reduced Hamiltonian

●Diagonalize the small nbnd x nbnd reduced Hamiltonian
to get the new estimate for the eigenpairs

●Repeat if needed in order to improve solution at
 fixed Hamiltonian

Y Pan, XY Dai, XG Gong, S de Gironcoli, GM Rignanese, and AH Zhou,
 J. Comp. Phys. 348, 482-492 (2017) 16

A variant of ParO method

●Solve in parallel the nbnd linear systems

●Given trial eigenpairs:

●Build the reduced Hamiltonian from both

●Diagonalize the small 2nbnd x 2nbnd reduced
Hamiltonian to get the new estimate for the eigenpairs

●Repeat if needed in order to improve solution at
 fixed Hamiltonian

Y Pan, XY Dai, XG Gong, S de Gironcoli, GM Rignanese, and AH Zhou,
 J. Comp. Phys. 348, 482-492 (2017)

17

A variant of ParO method (2)

●Solve in parallel the nbnd linear systems

●Given trial eigenpairs:

●Build the reduced Hamiltonian from both

●Diagonalize the small 2nbnd x 2nbnd reduced
Hamiltonian to get the new estimate for the eigenpairs

●Repeat if needed in order to improve solution at
 fixed Hamiltonian

Y Pan, XY Dai, XG Gong, S de Gironcoli, GM Rignanese, and AH Zhou,
 J. Comp. Phys. 348, 482-492 (2017) 18

216 Si atoms in a SC cell : Timing

Total CPU time

19

216 Si atoms in a SC cell : Timing

Total CPU time

Total CPU time h_psi

20

● Band group parallelization
● Operations on dynamically defined band groups are
distributed
● Memory is NOT distributed

● Parallel dense diagonalization
● A dedicated communicator is present (interface with
ScaLapack and ELPA)

● Domain decomposition parallelization
● Basis set components are distributed
● Memory is distributed

Many Factors contribute to Resulting Efficiency

21

● OpenMP/MPI parallelization
 Use OpenMP inside a node MPI across nodes ?
 For given resource allocation which distribution is best ?

● CPU/GPU hybrid
 How to maintain source code unity ?
 To what extent is this possible/desirable ?

Many Options to explore

22

CUDA Fortran is basically Fortran

It is possible, with some limited effort, to integrate GPU-aware
sections in a single source. Similarly to MPI/OpenMP cases.
Encapsulation/modularization of the more architecture-specific
bits will help readability and maintainability.

23

Adding GPUs: a range of different machines

Ulysses @ SISSA 16 nodes: 20 cores - 2 Gpus
Drake @ CNR 1 nodes: 16 cores - 4 Gpus (k80)
DAVIDE @ CINECA 45 nodes: 16 cores - 4 Gpus (p100)

comparison depends on the selected architecture.

a reliable performance modeling would be very useful
to make rational choices when buying hardware for and
allocating resources to a user community.

so far the focus of the effort has been more on enabling
the use of the new architecture rather than optimizing
performance.

-Davidson/CG solvers

24

25

#MPI should be = #GPU => OMP parallelism on CPU is important
 as core/gpu ratio may be significant

26

CG uses devices more efficiently
Time-to-solution favours Davidson

27

28

MPI x
omp

1 node 2 nodes 4 nodes 8 nodes

36 x 1 922.02 494.34 267.29 308.76

18 x 2 907.99 381.05 217.41 176.18

12 x 3 949.99 421.89 213.70 165.17

9 x 4 969.37 446.02 253.20 167.27

6 x 6 951.11 431.43 233.96 155.91

4 x 9 1037.23 465.58 328.12 176.94

3 x 12 1337.31 633.09 359.37 236.59

2 x 18 1357.39 603.59 395.83 244.41

1 x 36 2214.57 1276.03 633.39 398.98

Davidson Diagonalization with Scalapack

29

MPI x
omp

1 node 2 nodes 4 nodes 8 nodes

36 x 1 1696.00 871.79 558.25 836.72

18 x 2 1559.21 708.68 414.20 383.61

12 x 3 1847.92 793.36 416.11 301.33

9 x 4 1899.39 853.77 446.09 298.12

6 x 6 1876.67 812.19 391.78 262.13

4 x 9 1985.95 824.50 442.81 268.55

3 x 12 2363.67 1166.58 646.18 349.64

2 x 18 2652.92 1125.26 657.53 354.51

1 x 36 3972.33 2443.66 1163.25 621.99

PPCG Diagonalization with Scalapack

30

31

 Conclusions

● Being code agnostic: ESLW_Drivers is a playground that
 may be useful to experiment in an (almost) realistic system

 without the need to be fully embedded in a given code.

● Hybrid CPU/GPU: source code unity is an issue.
 No easy solution. Confine, template, encapsulate...

● OpenMP/MPI: OpenMP used to be very bad.
 It still is but is improving and may be usefull
 in the hybrid CPU/GPU case to reach better
 scalability

32

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33

