
Stefano de Gironcoli
Scuola Internazionale Superiore di Studi Avanzati

Trieste-Italy

Comparing the Efficiency of 
Iterative Eigenvalue Solvers: 

   the Quantum ESPRESSO

experience

0



  

Diagonalization of the Kohn-Sham hamiltonian  is a major step 
in the scf solution of any electronic sctructure system 

A number of methods to perform this task are currently used 
and new ones may be suggested that have advantages in terms
of stability, scalability, memory efficiency, ... 

●  Davidson
●  band-by-band Conjugate Gradient
●  Projected Preconditioned CG
●  Parallel Orbital-update 
●  …

Efficiency of the solver depends on implementation details

it is not easy to develop new methods without good knowledge
of the underlying code and its datastructure. 
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http://www.quantum-espresso.org/
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In pw.x of Quantum ESPRESSO two methods are implemented:

●Davidson diagonalization
-efficient in terms of number of  Hpsi required 
-memory intensive: requires a work space up to 
      (1+3*david) * nbnd * npwx
 and diagonalization of matrices up to 
      david*nbnd x david*nbnd 
 where david is by default 4, but can be reduced to 2

●Conjugate Gradient
-memory friendly: bands are dealt with one at a time.
-the need to orthogonalize to lower states makes it intrinsically 
 sequential and not efficient for large systems. 
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The two main iterative eigensolvers employed in the pw.x code of the 
Quantum ESPRESSO distribution were completely disentangled from 
the rest of the code. The solvers make use of the Linear Algebra 
domain-specific library LAXlib, developed within the MaX CoE, which is 
interfaced with ELPA and ScalaPack. 

Solvers exploit MPI parallelization and in addition to basis-set 
component distribution, a parallelization over target states is possible, 
as well as a specific parallelization for the dense linear algebra. 

Generic k-point as well as Gamma specific versions of the solvers are 
included. The Reverse Communication Interface (RCI) paradigm, 
allowing for a complete abstraction from the basis type and the 
interface used to perform the matrix-vector operations, has also been 
implemented for one of the solvers.

A toy code implementing the Cohen-Bergstresser empirical 
pseudopotential method is included to exemplify the use of the solvers 
and allow a test of their functionalities. It uses FFTXlib from MaX CoE.

The software developed during the Workshop is hosted by the e-cam 
gitlab server in Lausanne as a public sub-project of the ESL initiative     
                 (gitlab.e-cam2020/esl/ESLW_Drivers). 
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https://gitlab.e-cam2020.eu/esl/ESLW_Drivers

CB_toy_code/Doc              Phys.Rev. 141, 789 (1966)
                    /examples     contains inputs and ref. outputs
                    /src               contains simple code mains
FFTXlib                            fft library used by CB_toy_code
KS_Solvers/CG                 band-by-band CG 
                  /Davidson       Davidson iterative diagonalization
LAXlib                              linear algebra library (int w ELPA) 
UtilXlib                            basic utilities (error,timinig,para)
archive                            library archive (lapack source)
clib                                  c timing routine 
include
install                              configure, makedeps       
Makefile
configure
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https://gitlab.e-cam2020.eu/esl/ESLW_Drivers

CB_toy_code/Doc              Phys.Rev. 141, 789 (1966)
                    /examples     contains inputs and ref. outputs
                    /src               contains simple code mains
FFTXlib                            fft library used by CB_toy_code
KS_Solvers/CG                 band-by-band CG 
                  /Davidson       Davidson iterative diagonalization
                  /Davidson_RCI  Reverse Comm Interf version
                  /ParO             Parallel Orbital-updating
                  /PPCG            Projected Preconditioned  CG
LAXlib                              linear algebra library (int w ELPA) 
UtilXlib                            basic utilities (error,timinig,para)
archive                            library archive (lapack source)
clib                                  c timing routine 
include
install                              configure, makedeps       
Makefile
configure
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Conjugate Gradient

●For each band, given a trial eigenpair:

●Minimize the single particle energy 

by (pre-conditioned) CG method
                
subject to the constraints

  

●Repeat for next band until completed  
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●Conjugate gradient
-memory friendly: bands are dealt with one at a time.
-the need to orthogonalize to lower states makes it intrinsically 
 sequential and not efficient for large systems. 

●routines

- rcgdiagg , ccgdiagg  real/cmplx CG diagonalization generalized

- rotate_wfc_gamma, rotate_wfc_k        real/cmplx initial diag

- h_1psi, s_1psi

   * preconditioning
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Davidson Diagoalization

●Given trial eigenpairs:
●Eigenpairs of  the reduced Hamiltonian

●Diagonalize the small 2nbnd x 2nbnd reduced 
Hamiltonian to get the new estimate for the eigenpairs

●Repeat if needed in order to improve the solution
→ 3nbnd x 3nbnd → 4nbnd x 4nbnd … → nbnd x nbnd

●Build the correction vectors  

●Build an extended reduced Hamiltonian 
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●Davidson diagonalization
-efficient in terms of number of  Hpsi required 
-memory intensive: requires a work space up to 
      (1+3*david) * nbnd * npwx
 and diagonalization of matrices up to 
      david*nbnd x david*nbnd 
 where david is by default 4, but can be reduced to 2

●routines

- regterg , cegterg  real/cmplx  eigen iterative generalized

- h_psi, s_psi, g_psi

- rdiaghg, cdiaghg  real/cmplx diagonalization H generalized
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PPCG – Projected Preconditioned Conjugate Gradient
E. Vecharynski, C. Yang, J.E. Pask,   J. Comp.Phys. 290,73 (2015) 

each band (or small group of bands) is updated by diagonalizing
a small 3*blksize x 3*blksize matrix built from the current X,
the orthogonal residual and the orthogonal conjugate direction
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● PPCG  work in progress

●-memory friendly: bands are dealt with a small block at a time.
●-global calls to h_psi give opportunity for band parallelization 
(not working properly yet)

●-each block can be dealt with independently (parallelization)
●-most operations on arrays use efficient BLAS3 calls (DGEMM)

●routines

- ppcg,      real PPCG,  cmplx version presently not available
 
- rotate_wfc_gamma,   real initial diag (the same as CG)

- h_psi, (s_psi)    generalized algorithm  not available yet

   * preconditioning
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  arXiv:1510.07230v1 [math.NA] 25/10/2015

  arXiv:1405.0260v2 [math.NA] 20/11/2014

Some recent work on an alternative iterative methods
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ParO : Parallel Orbital-updating method  in a nutshell

●Solve in parallel the nbnd  linear systems

●Given trial eigenpairs:

●Build the reduced Hamiltonian

●Diagonalize the small nbnd x nbnd reduced Hamiltonian 
to get the new estimate for the eigenpairs

●Repeat if needed in order to improve solution at   
 fixed Hamiltonian 

Y Pan, XY Dai, XG Gong, S de Gironcoli, GM Rignanese, and AH Zhou, 
                                                                        J. Comp. Phys. 348, 482-492 (2017) 16



A variant of ParO method

●Solve in parallel the nbnd  linear systems

●Given trial eigenpairs:

●Build the reduced Hamiltonian from both 

●Diagonalize the small 2nbnd x 2nbnd reduced 
Hamiltonian to get the new estimate for the eigenpairs

●Repeat if needed in order to improve solution at   
 fixed Hamiltonian 

Y Pan, XY Dai, XG Gong, S de Gironcoli, GM Rignanese, and AH Zhou, 
                                                                        J. Comp. Phys. 348, 482-492 (2017)
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A variant of ParO method  (2)

●Solve in parallel the nbnd  linear systems

●Given trial eigenpairs:

●Build the reduced Hamiltonian from both 

●Diagonalize the small 2nbnd x 2nbnd reduced 
Hamiltonian to get the new estimate for the eigenpairs

●Repeat if needed in order to improve solution at   
 fixed Hamiltonian

Y Pan, XY Dai, XG Gong, S de Gironcoli, GM Rignanese, and AH Zhou, 
                                                                        J. Comp. Phys. 348, 482-492 (2017) 18



216 Si atoms in a SC cell : Timing 

Total CPU time
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216 Si atoms in a SC cell : Timing 

Total CPU time

Total CPU time h_psi
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● Band group parallelization
● Operations on dynamically defined  band groups are 
distributed
● Memory is NOT distributed

● Parallel dense diagonalization 
● A dedicated communicator is present (interface with 
ScaLapack and ELPA) 

● Domain decomposition parallelization
● Basis set components are distributed
● Memory is distributed

Many Factors contribute to Resulting Efficiency
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● OpenMP/MPI parallelization
    Use OpenMP inside a node MPI across nodes ?
    For given resource allocation which distribution is best ? 

● CPU/GPU hybrid
   How to maintain source code unity ?
   To what extent is this possible/desirable ? 

Many Options to explore
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CUDA Fortran is basically Fortran

It is possible, with some limited effort, to integrate GPU-aware 
sections in a single source. Similarly to MPI/OpenMP cases.
Encapsulation/modularization of the more architecture-specific
bits will help readability and maintainability.  
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Adding GPUs:  a range of different machines

Ulysses @ SISSA       16 nodes: 20 cores - 2 Gpus
Drake @ CNR              1 nodes: 16 cores - 4 Gpus (k80)
DAVIDE @ CINECA   45 nodes: 16 cores - 4 Gpus (p100)

comparison depends on the selected architecture. 
   
a reliable performance modeling would be very useful
to make rational choices when buying hardware for and 
allocating resources to a user community.

so far the focus of the effort has been more on enabling
the use of the new architecture rather than optimizing 
performance. 

-Davidson/CG solvers
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#MPI should be = #GPU => OMP parallelism on CPU is important
                                          as core/gpu ratio may be significant
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CG uses devices more efficiently
Time-to-solution favours Davidson
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MPI x 
omp

1 node 2 nodes 4 nodes 8 nodes

36 x 1 922.02 494.34 267.29 308.76

18 x 2 907.99 381.05 217.41 176.18

12 x 3 949.99 421.89 213.70 165.17

9 x 4 969.37 446.02 253.20 167.27

6 x 6 951.11 431.43 233.96 155.91

4 x 9 1037.23 465.58 328.12 176.94

3 x 12 1337.31 633.09 359.37 236.59

2 x 18 1357.39 603.59 395.83 244.41

1 x 36 2214.57 1276.03 633.39 398.98

Davidson Diagonalization with Scalapack
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MPI x 
omp

1 node 2 nodes 4 nodes 8 nodes

36 x 1 1696.00 871.79 558.25 836.72

18 x 2 1559.21 708.68 414.20 383.61

12 x 3 1847.92 793.36 416.11 301.33

9 x 4 1899.39 853.77 446.09 298.12

6 x 6 1876.67 812.19 391.78 262.13

4 x 9 1985.95 824.50 442.81 268.55

3 x 12 2363.67 1166.58 646.18 349.64

2 x 18 2652.92 1125.26 657.53 354.51

1 x 36 3972.33 2443.66 1163.25 621.99

PPCG Diagonalization with Scalapack
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                                  Conclusions

      
● Being code agnostic: ESLW_Drivers is a playground that
 may be useful to experiment in an (almost)  realistic system

  without the need to be fully embedded in a given code.

● Hybrid CPU/GPU: source code unity is an issue. 
 No easy solution. Confine, template, encapsulate...

● OpenMP/MPI: OpenMP used to be very bad. 
                        It still is but is improving and may be usefull
                        in the hybrid CPU/GPU case to reach better 
                        scalability

32


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33

