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& ® The Problem

The Bethe-Salpeter Eigenvalue Problem

Find eigenvalues, right and left eigenvectors for

Hpsx = Ax with
y _[A Bl_[A B
B5=|-B -A| ~ |-BF -AT|’
A=A B =BT € C™" are dense.
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The Bethe-Salpeter Eigenvalue Problem

Find eigenvalues, right and left eigenvectors for

Hpsx = Ax with
ho_[A B]_[A B
B5=|-B -A| ~ |-BF -AT|’
A=A B =BT € C™" are dense.

m Comes up in quantum chemical simulations.

m n is proportional to n2 where n, is the number of electrons in the
system.

— n can become very large (> 50, 000)
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& @ The Problem

The Bethe-Salpeter Eigenvalue Problem

Find eigenvalues, right and left eigenvectors for

Hpsx = Ax with
ho_[A B]_[A B
B5=|-B -A| ~ |-BF -AT|’
A=A B =BT € C™" are dense.

m Comes up in quantum chemical simulations.

m n is proportional to n2 where n, is the number of electrons in the
system.

— n can become very large (> 50, 000)

— Parallel and scalable algorithms running on supercomputers necessary.
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@ Applications in Quantum Chemistry

Eigenvalues \;, right eigenvectors x; and left eigenvectors y; are used to
compute

m Spectral Density
1 2n
Bw) = o= 36w =),
j=1

m Optical Absorption Spectrum

n dHXJ Hd
)= ST sy L /U\Mf\

=1 Yi X
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Eigenvalues \;, right eigenvectors x; and left eigenvectors y; are used to
compute

m Spectral Density
1 2n
Bw) = o= 36w =),
j=1

m Optical Absorption Spectrum

n dHXJ Hd
)= ST sy L /\J\M\J\

=1 Yi X
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@ Properties of (definite) Bethe-Salpeter EVP

m Due to the special structure eigenvalues appear in quadruples
(A=A A, =N).
[BENNER, FASSBENDER, YANG '14/718]

X m X
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Q&Y@ Properties of (definite) Bethe-Salpeter EVP

m Due to the special structure eigenvalues appear in quadruples
(A=A A, =N).
[BENNER, FASSBENDER, YANG '14/718]

: o0 A B .
m Hps is called definite if [6’ _In:| Hgs = [é ,Z\] > 0, holds in many

physical settings. Here eigenvalues come in real pairs and it holds

There exist X1, Xo € C"™ ", and A1,..., A\ € Ry, Ay = diag{\1,...,\n}, s.t.

HasX = X {"* A ] YHHgs = [’” A ] YH, YHX = b,
4 4
X _Pa =%
where X = {Xz )?1] ., V= [—Xz X, ] .
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@@ A Structure-Preserving Method

A direct method is implemented in BSEPACK®. The structure-preserving

acquisition of all eigenpairs in high precision relies on a connection to
Hamiltonian matrices.

1, —il
1 n n
Let Q = o |:In il ] then

o So-lehry mig]-m

where H is real Hamiltonian, i.e. JH = (JH)T with J = [_OI (l)]

"https://sites.google.com/a/1bl.gov/bsepack/
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@ The resulting algorithm

Algorithm 1 Algorithm for the complex Bethe-Salpeter eigenvalue problem

I 0 A B
. __ AH _ RT nxn n = | = =
Require: A= A" B=B" € C"™" st. {0 _ln] Hgs = [B A} >0

Ensure: X1, Xo € C"™%" and A, = diag{)1,...,\n} satisfying H {2] = {2] As.

: Compute the spectral decomposition —iW = [Z;  Z_] diag{A,—N;} [Z} Z_]H.

. Xi| _ [l O —1/2
 Set [XJ = [0 —/,,} QLZAAT

. | Re(A+B) Im(A—B)
1: Construct M = [—Im(A—l— B) Re(A- B)
2: Compute the Cholesky factorization M = LLT
3: Construct W = LT |: OI I"] L
I, 0
4
5
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@ The resulting algorithm

Algorithm 1 Algorithm for the complex Bethe-Salpeter eigenvalue problem

I 0 A B
. __ AH _ RT nxn n = | = =
Require: A= A" B=B" € C"™" st. {0 _ln] Hgs = [B A} >0

Ensure: X1, Xo € C"™%" and A, = diag{)1,...,\n} satisfying H {2] = {2] As.

: Compute the spectral decomposition —iW = [Z;  Z_] diag{A,—N;} [Z} Z_]H.

. Xi| _ [l O —1/2
 Set [XJ = [0 —/,,} QLZAAT

. | Re(A+B) Im(A—B)
1: Construct M = [—Im(A—l— B) Re(A- B)
2: Compute the Cholesky factorization M = LLT
3: Construct W = LT |: OI I"] L
I, 0
4
5

m Main workload: Solve a strictly imaginary Hermitian eigenvalue
problem.
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@ The resulting algorithm

Algorithm 1 Algorithm for the complex Bethe-Salpeter eigenvalue problem

I 0 A B
. __ AH _ RT nxn n = | = =
Require: A= A" B=B" € C"™" st. {0 _ln] Hgs = [B A} >0

Ensure: X1, Xo € C"™%" and A, = diag{)1,...,\n} satisfying H {2] = {2] As.

: Compute the spectral decomposition —iW = [Z;  Z_] diag{A,—N;} [Z} Z_]H.

. Xi| _ [l O —1/2
 Set [XJ = [0 —/,,} QLZAAT

. | Re(A+B) Im(A—B)
1: Construct M = [—Im(A—f— B) Re(A- B)
2: Compute the Cholesky factorization M = LLT
3: Construct W = LT |: OI I"] L
I, 0
4
5

m Main workload: Solve a strictly imaginary Hermitian eigenvalue
problem.

— Imanginary part is skew-symmetric.
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@ Implementation

m W is skew-symmetric

= can be reduced to tridiagonal form (e.g via Householder transformations):
0 o
owuT =7 = | O

a2p—2
—a2p-2 0
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@ Implementation

m W is skew-symmetric

= can be reduced to tridiagonal form (e.g via Householder transformations):

0 o
owuT =T = | O
Q2p—2
—Qop—2 0
m Can be transformed to symmetric form using D = diag{1,i,i?,...,i*"}
0 [e%} 0 [e5}
_jpH |7 0 p= | O
2p—-2 - o Q2p—2
—Qop—2 0 Qon—2 0
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@ Implementation

m Reduction to tridiagonal form by editing ScaLAPACK's routine for
tridiagonal reduction of symmetric matrices:

m PDSYTRD — PDSSTRD
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@ Implementation

m Reduction to tridiagonal form by editing ScaLAPACK's routine for
tridiagonal reduction of symmetric matrices:

m PDSYTRD — PDSSTRD
m Solve symmetric tridiagonal EVP via

1. Bisection method (PDSTEBZ)
2. Inverse Iteration (PDSTEIN).
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@ Implementation

m Reduction to tridiagonal form by editing ScaLAPACK's routine for
tridiagonal reduction of symmetric matrices:

m PDSYTRD — PDSSTRD
m Solve symmetric tridiagonal EVP via

1. Bisection method (PDSTEBZ)
2. Inverse Iteration (PDSTEIN).

m Back transformation of eigenvectors:

X1l |l 0 —-1/2
[XJ = {0 _J QLUDV A, 7",

where all matrices but D = diag{1,i,i%...,i?"} are real.
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& @ The ELPA Library

m BSEPACK is just proof-of-concept, not performance optimized.
— Room for improvement by using better libraries!

The ELPA Project?

Eigenvalue SolLvers for Petaflop-Applications

The publicly available ELPA library provides highly efficient and highly
scalable direct eigensolvers for symmetric matrices. Though especially
designed for use for PetaFlop/s applications solving large problem sizes on
massively parallel supercomputers, ELPA eigensolvers have proven to be
also very efficient for smaller matrices.

m Mainly developed at Max Planck Computing and Data Facility
(MPCDF) in Garching.

m Original application area: electronic structure calculations.

*https://elpa.mpcdf.mpg.de/
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@ Tridiagonalisation in ELPA

ScaLAPACK

>
>

matrix-vector operations

full matrix tridiagonal matrix
(a)
ELPA step 1 ELPA step 2
W matrix-vector
operations operations
full matrix band matrix tridiagonal matrix
(b)

Figure: ELPA employs a two-step tridiagonalisation for symmetric or Hermitian
matrices. [MAREK ET AL. '14]
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@ ELPA vs. ScaLAPACK

m BLAS Ivl. 3 routines for redution to banded form.
— More data locality, less communication, highly efficient GEMM routines!

m Carefully crafted communication patterns in reduction to tridiagonal
form and eigenvector back transformation.

m Solution of Tridiagonal Systems: Divide-and-Conquer instead of
Bisection Method and Inverse lteration.

m OpenMP and GPU support.

Better Performance and Scalability!
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® Using ELPA to enhance BSEPACK

Two promising points of attack for ELPA:

1. Diagonalize complex Hermitian matrix —iW = ZAZ" using ELPA

+ Main portion of the workload could benefit from performance and
scalability of ELPA.
— Uses complex arithmetic, while BSEPACK mainly work on real data.

2. Extend the ELPA algorithm for skew-symmetric matrices, just as
ScaLAPACK was extended in BSEPACK.
+ Easy from mathematical point of view
— Major revision of ELPA software stack necessary.
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@v@ Numerical Test Setup

System DRACO

m Located at Max Planck Computing
and Data Facility

m HPC Extension to HPC System
HYDRA

m 880 nodes, Intel 'Haswell' Xeon
E5-2698, 32 cores @ 2.3 GHz

m 128 GB main memory per node

m Interconnect: fast InfiniBand FDR14
network

http://www.mpcdf.mpg.de/services/computing/draco/about-the-system

penke@mpi-magdeburg.mpg.de ELPA for the Bethe-Salpeter Eigenvalue Problem



m AcC™"and B € C™" where initialized with random complex
values.

m Diagonal of A positive and scaled up, s.t. [g E] is positive definite

(Gershgorin Circle Theorem).

m To work on a matrix on a distributed memory machine, it is divided
into many subblocks of a certain block sizes np X np.
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m AcC™"and B € C™" where initialized with random complex
values.

m Diagonal of A positive and scaled up, s.t. [g E] is positive definite

(Gershgorin Circle Theorem).

m To work on a matrix on a distributed memory machine, it is divided
into many subblocks of a certain block sizes np X np.

Numerical Tests:
1. Test impact of block size on performance for n = 25, 000.
2. Test strong scalability for medium sized matrices n = 25, 000.

3. Compare runtimes for larger matrices up to n = 75, 000.
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@ Block Size in BSEPACK and BSEPACK+ELPA

5,000 ‘ ‘
—o— BSEPACK
4,000 | —»— BSEPACK-+ELPA 1
0
£3,000 - |
(]
£
22,000 |
>
o
1,000 |- .
P —s “/‘\‘N—_ﬂ
% 50 100 150 200 250 300

Block Size ny,

Figure: Runtimes for different block sizes at n = 25, 000.
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@ Scalability of BSEPACK and BSEPACK+ELPA

T T T T
—e— BSEPACK, n, = 64

6,000 |- —o— BSEPACK nj, = 256 f
—x— BSEPACK + ELPA, nj, = 64

Ins

4,000 |-

Runtime

N
o
o
o

T

Number of Nodes

Figure: Strong Scalability for medium sized matrix (n = 25,000) in BSEPACK and
BSEPACK enhanced with ELPA. 32 threads were used per node.
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@ Scalability of BSEPACK and BSEPACK+ELPA

n X
c »
e 103
E E
5 [
= [
= I —e— BSEPACK
o | - ©- Tridiagonalization (ScaLAPACK)
[ —— BSEPACK + ELPA
- % — Hermitian Solve (ELPA)
2 L .
10 F Perfect Scaling
| |
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Number of Nodes

Figure: Strong Scalability for medium sized matrix (n = 25,000) in BSEPACK and
BSEPACK enhanced with ELPA. 32 threads were used per node.
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@ Runtimes for large matrices

6,000 | ‘ ‘
—o— BSEPACK, n, = 64
—e— BSEPACK, n, = 256
BSEPACK + ELPA,
“ 4,000 ny, = 64 i
=
[0}
E
=
c
22,000 |
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Size of submatrices A, B € C"*" -10*

Figure: Runtimes of BSEPACK and BSEPACK-ELPA for large matrices of size
2n x 2n.
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Runtimes for large matrices

10% E
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“o103 E =
B & ]
) - ]
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Figure: Runtimes of BSEPACK and BSEPACK+ELPA for large matrices of size
2n x 2n.
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® Using ELPA to enhance BSEPACK

Two promising points of attack for ELPA:

1. Diagonalize complex Hermitian matrix —iW = ZAZ" using ELPA

+ Main portion of the workload could benefit from performance and
scalability of ELPA.
— Uses complex arithmetic, while BSEPACK mainly work on real data.

2. Extend the ELPA algorithm for skew-symmetric matrices, just as
ScaLAPACK was extended in BSEPACK.
+ Easy from mathematical point of view
— Major revision of ELPA software stack necessary.
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& ® ELPA for Skew-Symmetric Matrices

Stays the same:
|

Computation of Householder vectors.
Application to off-diagonal blocks.

Tridiagonal solve.

Most of the back transformation of eigenvectors.

All communication and synchronizations.
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& ® ELPA for Skew-Symmetric Matrices

Stays the same:

m Computation of Householder vectors.
m Application to off-diagonal blocks.
m Tridiagonal solve.
m Most of the back transformation of eigenvectors.
m All communication and synchronizations.
Change wherever symmetry is implicitly assumed:
m Updates on blocks including the diagonal:
A—(I—7wHA(Il —7wT) = A— VSTVTA - 0.57'2VTAVVT2

-~

-
Uy

— (Arv — 0572w T Av) v’
uz

A:AT:>U2ZU1, A:—AT:>UQ:—U1
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@ ELPA for Skew-Symmetric Matrices

m Use skew-symmetric BLAS routines provided by BSEPACK.

m DSYR2 — DSSR2
= DSYMV — DSSMV

m Multiplication with D = diag{1,i,i?,...,i*"} in back transformation.
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@ ELPA for Skew-Symmetric Matrices

m Use skew-symmetric BLAS routines provided by BSEPACK.

m DSYR2 — DSSR2
= DSYMV — DSSMV

m Multiplication with D = diag{1,i,i?,...,i*"} in back transformation.

Preliminary results from a smaller compute server.

m 2 Intel 'Haswell’ Xeon E5-2640v3, 8 cores each, ©2.6GHz
= 32 GB main memory per CPU
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@ Runtimes for large matrices

2,500 T T T
—o— BSEPACK, n, = 64
2.000 | —o— BSEPACK + complex ELPA, n, = 64 |
’ —e— BSEPACK + skew-symmetric ELPA, n, = 64
)
-£1,500 | -
()
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S
o
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| |
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Size of submatrices A, B € C"*" 10

Figure: Preliminary results matrices of size 2n X 2n running on 16 cores.

penke@mpi-magdeburg.mpg.de C. Penke ELPA for the Bethe-Salpeter Eigenvalue Problem



Easy further improvements:

m Rank-2 Update becomes easier for skew-symmetric matrices:
A—(l—1twHA(Il—twT)=A—v(rvTA-0572yTAvvT)
=0
— (Arv —0572vyTAv)v T
=0

m Eigenvector resulting from tridiagonal solve have to be multiplied by
complex diagonal D before back transformation.

— Instead of applying Householder transformation directly, we apply
them to identity matrix and then multiply.

m Easier to implement but more FLOPs.

ELPA for the Bethe-Salpeter Eigenvalue Problem
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@ Future Work

m ELPA for skew-symmetric matrices on production level (including
OpenMP and GPU support)
m HPC implementations of algorithms for Hamiltonian matrices.

m Structure preserving Divide-and-Conquer scheme based on the matrix
disk function / doubling algorithm [Bar, DEMMEL, GU '97] and
permuted Lagrangian Graph Bases [MEHRMANN, POLONI '12].

Thank you for your attention!
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The ELPA library can be found at
https://elpa.mpcdf.mpg.de/
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