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1 Introduction

1.1 ELSI: ELectronic Structure Infrastructure

Computer simulations based on electronic structure theory, particularly Kohn-Sham density-functional theory (KS-DFT),
are facilitating scientific discoveries across a broad range of disciplines such as chemistry, physics, and materials science.
Despite its remarkable success, routine application of KS-DFT to systems consisting of thousands of atoms is still difficult.
The major computational bottleneck is an eigenvalue problem

HC = SCΣ, (1.1)

where H and S are the so-called Hamiltonian and overlap matrices, C and Σ are the eigenvectors and eigenvalues
of this eigensystem. The direct solution of Eq. 1.1 scales cubically with respect to the problem size. To overcome
this bottleneck, researchers and software developers are actively improving the efficiency of eigensolvers and developing
alternative algorithms that circumvent the explicit solution of the eigenproblem. The open-source ELSI library features
a unified software interface that connects electronic structure codes to various high-performance solver libraries ranging
from conventional cubic scaling eigensolvers to linear scaling density matrix solvers [1]. To date, it is adopted by four
electronic structure packages (DFTB+ [2], DGDFT [3], FHI-aims [4], and SIESTA [5]).

1.2 Solver Libraries Supported by ELSI

Distributed-memory solvers supported in the current version of ELSI are: ELPA [6, 7, 8, 9], libOMM [10], PEXSI [11,
12, 13, 14, 15], EigenExa [16, 17], SLEPc-SIPc [18, 19, 20, 21], NTPoly [22], and BSEPACK [23]. Shared-memory solvers
supported in the current version of ELSI are: LAPACK [24] and MAGMA [25, 26].

What follows is a brief summary of the solvers supported in ELSI. For technical descriptions of the solvers, the reader is
referred to the original publications of the solvers, e.g., those in the reference list of this document.

ELPA: The massively parallel dense eigensolver ELPA facilitates the solution of symmetric or Hermitian eigenproblems
on high-performance computers. It features an efficient two-stage tridiagonalization algorithm which is better suited for
parallel computing than the conventional one-stage algorithm.

libOMM: The orbital minimization method (OMM) bypasses the explicit solution of the Kohn-Sham eigenproblem by
efficient iterative algorithms which directly minimize an unconstrained energy functional using a set of auxiliary Wannier
functions. The Wannier functions are defined on the occupied subspace of the system, reducing the size of the problem.
The density matrix is then obtained directly, without calculating the Kohn-Sham orbitals.

PEXSI: PEXSI is a Fermi operator expansion (FOE) based method which expands the density matrix in terms of a linear
combination of a small number of rational functions (pole expansion). Evaluation of these rational functions exploits the
sparsity of the Hamiltonian and overlap matrices using selected inversion to enable scaling to 100,000+ of MPI tasks for
calculation of the electron density, energy, and forces in electronic structure calculations.

EigenExa: The EigenExa library consists of two massively parallel implementations of direct, dense eigensolver. Its
eigen sx method features an efficient transformation from full to pentadiagonal matrix. Eigenvalues and eigenvectors of
the pentadiagonal matrix are directly solved with a divide-and-conquer algorithm. This method is particularly efficient
when a large part of the eigenspectrum is of interest.

SLEPc-SIPs: SLEPc-SIPs is a parallel sparse eigensolver for real symmetric generalized eigenvalue problems. It imple-
ments a distributed spectrum slicing method and it is currently available through the SLEPc library built on top of the
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PETSc framework.

NTPoly: NTPoly is a massively parallel library for computing the functions of sparse, symmetric matrices based on
polynomial expansions. For sufficiently sparse matrices, most of the matrix functions can be computed in linear time.
Distributed memory parallelization is based on a communication avoiding sparse matrix multiplication algorithm. Various
density matrix purification algorithms which compute the density matrix as a function of the Hamiltonian matrix are
implemented in NTPoly.

BSEPACK: BSEPACK is a parallel ScaLAPACK-style library for solving the Bethe-Salpeter eigenvalue problem on
distributed-memory high-performance computers.

LAPACK: LAPACK provides routines for solving linear systems, least squares problems, eigenvalue problems, and
singular value problems. In order to promotes high efficiency on present-day computers, LAPACK routines are written
to exploit BLAS, particularly level-3 BLAS, as much as possible. In ELSI, the tridiagonalization and the corresponding
back-transformation routines in LAPACK are combined with the efficient divide-and-conquer tridiagonal solver in ELPA.

MAGMA: The MAGMA project aims to develop a dense linear algebra framework for heterogeneous architectures
consisting of manycore and GPU systems. MAGMA incorporates the latest advances in synchronization-avoiding and
communication-avoiding algorithms, and uses a hybridization methodology where algorithms are split into tasks of
varying granularity and their execution scheduled over the available hardware components.

1.3 Citing ELSI

Key concepts of ELSI and the first version of its implementation are described in the following paper [1]:

V. W-z. Yu, F. Corsetti, A. Garćıa, W. P. Huhn, M. Jacquelin, W. Jia, B. Lange, L. Lin, J. Lu, W. Mi, A. Seifitokaldani,
Á. Vázquez-Mayagoitia, C. Yang, H. Yang, and V. Blum, ELSI: A Unified Software Interface for Kohn-Sham Electronic
Structure Solvers, Computer Physics Communications, 222, 267-285 (2018).

In addition, an incomplete list of publications describing the solvers supported in ELSI may be found in the bibliography
of this document. Please consider citing these articles when publishing results obtained with ELSI.

1.4 Acknowledgments

ELSI is a National Science Foundation Software Infrastructure for Sustained Innovation - Scientific Software Integration
(SI2-SSI) supported software infrastructure project. The ELSI Interface software and this User’s Guide are based
upon work supported by the National Science Foundation under Grant Number 1450280. Any opinions, findings, and
conclusions or recommendations expressed here are those of the authors and do not necessarily reflect the views of the
National Science Foundation.
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2 Installation of ELSI

2.1 Prerequisites

The ELSI package contains the ELSI interface software as well as redistributed source code for the solver libraries ELPA
(version 2020.05.001), libOMM (version 1.0.0), PEXSI (version 1.2.0), and NTPoly (version 2.7.0). The installation of
ELSI makes use of the CMake software. Minimum requirements include:

CMake [minimum version 3.0; newer version recommended]

Fortran compiler [Fortran 2003 compliant]

C compiler [C99 compliant]

MPI [MPI-3]

The PEXSi, EigenExa, SLEPc-SIPs, BSEPACK, and MAGMA solvers are not enabled by default. Enabling the PEXSI
solver requires:

C++ compiler [C++ 11 compliant]

Enabling the EigenExa solver requires:

EigenExa [version 2.11 or newer]

Enabling the SLEPc-SIPs solver requires:

SLEPc [version 3.9 or newer]

PETSc [version 3.9 or newer, with MUMPS and ParMETIS enabled]

Enabling the MAGMA solver requires:

MAGMA [version 2.5 or newer]

CUDA [version 10.0 or newer]

Enabling the CUDA-based GPU acceleration in the ELPA solver requires:

CUDA [version 10.0 or newer recommended]

Linear algebra libraries should be provided for ELSI to link against:

BLAS, LAPACK, BLACS, ScaLAPACK

2.2 Quick Start

We recommend preparing configuration settings in a toolchain file that can be read by CMake. Edit one of the templates
provided in the “toolchains” directory of the ELSI package. As an example, a minimal Intel toolchain looks like

5
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# Modify contents in red if necessary

set(CMAKE_Fortran_COMPILER "mpiifort" CACHE STRING "MPI Fortran compiler")

set(CMAKE_Fortran_FLAGS "-O3 -ip -fp-model precise" CACHE STRING "Fortran flags")

set(CMAKE_C_COMPILER "mpiicc" CACHE STRING "MPI C compiler")

set(CMAKE_C_FLAGS "-O3 -ip -fp-model precise -std=c99" CACHE STRING "C flags")

set(LIB_PATHS "$ENVMKLROOT/lib/intel64" CACHE STRING "External library paths")

set(LIBS "mkl_scalapack_lp64 mkl_blacs_intelmpi_lp64 mkl_intel_lp64 mkl_sequential mkl_core"

CACHE STRING "External libraries")

This will build ELSI with the redistributed ELPA, libOMM, and NTPoly solvers. A complete list of configure options
may be found in Sec. 2.3.4.

Once a toolchain file is ready, follow the steps below:

$ cd elsi-interface

$ ls

CMakeLists.txt external/ src/ test/ ...

$ mkdir build

$ cd build

$ cmake -DCMAKE_TOOLCHAIN_FILE=YOUR_TOOLCHAIN_FILE ..

...

...

-- Generating done

-- Build files have been written to: /current/dir

$ make [-j np]

$ [make install]

“YOUR TOOLCHAIN FILE” should be the user’s toolchain file. Commands in square brackets are optional.

If the compilation succeeds, the next step would be reading the code examples in the “test” directory of the ELSI
package, which showcase the use of ELSI in C and Fortran programs.

2.3 Configuration

2.3.1 Compilers

CMake automatically detects compilers. The choices made by CMake often work, but they do not necessarily lead to
the optimal performance. In some cases, the compilers picked up by CMake may not be the ones desired by the user. To
build ELSI, it is mandatory that the user explicitly sets the identification of the compilers in CMAKE Fortran COMPILER,
CMAKE C COMPILER, and CMAKE CXX COMPILER. Please note that the C++ compiler is not needed when building ELSI
without PEXSI.

In addition, it is highly recommended to specify the compiler flags in CMAKE Fortran FLAGS, CMAKE C FLAGS, and
CMAKE CXX FLAGS.

2.3.2 Solvers

The ELPA, libOMM, PEXSI, NTPoly, and BSEPACK solver libraries, as well as the SuperLU DIST and PT-SCOTCH
libraries (both required by PEXSI), are redistributed with the current ELSI package.

The redistributed version of ELPA comes with a few “kernels” written to take advantage of architecture-specific in-
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struction sets, which may be chosen by the ELPA2 KERNEL keyword. Available options are AVX, AVX2, and AVX512, for
architectures supporting Intel AVX, AVX2, and AVX512 instruction sets, respectively. In ELPA, these kernels are em-
ployed to accelerate the calculation of eigenvectors, which is often a bottleneck when calculating a large portion of the
eigenspectrum. In addition, ELPA supports GPU acceleration on NVIDIA devices via the CUDA programming model
and the cuBLAS library. This feature may be enabled by the keyword USE GPU CUDA, which requires the CUDA runtime
and cuBLAS libraries.

The PEXSI, EigenExa, SLEPc-SIPs, BSEPACK, and MAGMA solvers are not enabled by default. They may be acti-
vated by the keywords ENABLE PEXSI, ENABLE EIGENEXA, ENABLE SIPS, ENABLE BSEPACK, and ENABLE MAGMA, respectively.
PEXSI 1.2.0, EigenExa 2.11, SLEPc 3.9, 3.10, 3.11, 3.12, 3.13, BSEPACK 0.1, and MAGMA 2.5 have been tested with
this version of ELSI. Older/newer versions may or may not be compatible. The PETSc library, required by SLEPc, must
be compiled with MPI support, and (at least) with MUMPS and ParMETIS enabled.

Experienced users are encouraged to link ELSI against externally installed, better optimized solver libraries. The key-
words USE EXTERNAL ELPA, USE EXTERNAL OMM, USE EXTERNAL PEXSI, USE EXTERNAL NTPOLY, and USE EXTERNAL BSEPACK

control the usage of externally compiled ELPA, libOMM, PEXSI, NTPoly, and BSEPACK, respectively.

All external libraries and include paths should be set via INC PATHS, LIB PATHS, and LIBS, each of which is a list of
items separated with “ ” (space) or “;” (semicolon). If an external library depends on additional libraries, LIBS should
include all the relevant dependencies. For instance, LIBS should include the MAGMA library and CUDA libraries when
enabling MAGMA support.

2.3.3 Tests

Building ELSI test programs may be enabled by ENABLE TESTS. Then, the compilation of ELSI may be verified by “make
test” or “ctest”. Note that the tests may not run if launching MPI jobs is prohibited on the user’s working platform.

2.3.4 List of All Configure Options

The options accepted by the ELSI CMake build system are listed here in alphabetical order. Some additional explanations
are made below the table.

Option Type Default Explanation
ADD UNDERSCORE boolean ON Suffix C functions with an underscore
BUILD SHARED LIBS boolean OFF Build ELSI as a shared library
CMAKE C COMPILER string none MPI C compiler
CMAKE C FLAGS string none C flags
CMAKE CUDA COMPILER string none CUDA compiler (nvcc)
CMAKE CUDA FLAGS string none CUDA flags
CMAKE CXX COMPILER string none MPI C++ compiler
CMAKE CXX FLAGS string none C++ flags
CMAKE Fortran COMPILER string none MPI Fortran compiler
CMAKE Fortran FLAGS string none Fortran flags
CMAKE INSTALL PREFIX path /usr/local Path to install ELSI
ELPA2 KERNEL string none ELPA2 kernel
ENABLE BSEPACK boolean OFF Enable BSEPACK support
ENABLE C TESTS boolean OFF Build C test programs
ENABLE EIGENEXA boolean OFF Enable EigenExa support
ENABLE MAGMA boolean OFF Enable MAGMA support
ENABLE PEXSI boolean OFF Enable PEXSI support
ENABLE SIPS boolean OFF Enable SLEPc-SIPs support
ENABLE TESTS boolean OFF Build Fortran test programs
INC PATHS string none Include directories of external libraries
LIB PATHS string none Directories containing external libraries
LIBS string none External libraries
MPIEXEC NP string mpirun -n 4 Command to run tests in parallel with MPI
MPIEXEC 1P string mpirun -n 1 Command to run tests in serial with MPI
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SCOTCH LAST RESORT string none Command to invoke PT-SCOTCH header generator
USE EXTERNAL BSEPACK boolean OFF Use external BSEPACK
USE EXTERNAL ELPA boolean OFF Use external ELPA
USE EXTERNAL NTPOLY boolean OFF Use external NTPoly
USE EXTERNAL OMM boolean OFF Use external libOMM and MatrixSwitch
USE EXTERNAL PEXSI boolean OFF Use external PEXSI (if PEXSI enabled)
USE GPU CUDA boolean OFF Use CUDA-based GPU acceleration in ELPA
USE MPI MODULE boolean OFF Use MPI module instead of “mpif.h” in Fortran code

Remarks

(1) ADD UNDERSCORE: In the redistributed PEXSI and SuperLU DIST code, there are calls to functions from the linear
algebra libraries, e.g. “dgemm”. If ADD UNDERSCORE is “ON”, the code will call “dgemm ” instead of “dgemm”. Turn
this keyword off if routines are not suffixed with “ ” in the linear algebra libraries.

(2) CMAKE INSTALL PREFIX: ELSI may be installed to the location specified in CMAKE INSTALL PREFIX by “make install”.

(3) ELPA2 KERNEL: There are a number of computational kernels available with the ELPA solver. Choose from “AVX”
(Intel AVX), “AVX2” (Intel AVX2), and “AVX512” (Intel AVX512). See Sec. 2.3.2 for more information.

(4) SCOTCH LAST RESORT: The compilation of PT-SCOTCH is a multi-step process. First, two auxiliary executables are
created. Then, some header files are generated on-the-fly by the two executables. Finally, the main source files are
compiled with the generated header files included. The header generation step may fail on platforms where directly
running an executable is prohibited, e.g. login nodes of a supercomputer. Often this can be circumvented by requesting
an interactive session to a compute node and compiling the code there, or by submitting the compilation as a job to the
queuing system. However, this may still fail on platforms where an executable compiled with MPI must be launched by
an MPI job launcher (aprun, mpirun, srun, etc). If the standard compilation of PT-SCOTCH fails due to this reason,
the user may set SCOTCH LAST RESORT to the command that starts an MPI job with one MPI task, e.g. “mpirun -n 1”.
This command is then used to launch the auxiliary executables to generate necessary header files for PT-SCOTCH.

(5) External libraries: ELSI redistributes source code of ELPA, libOMM, NTPoly, PEXSI, SuperLU DIST, and PT-
SCOTCH libraries, which are built by default together with the ELSI interface. Experienced users are encouraged to
link the ELSI interface against external, better optimized solver libraries. See Sec. 2.3.2 for more information.

2.4 Importing ELSI into Third-Party Code Projects

2.4.1 Linking against ELSI: CMake

A CMake configuration file called elsiConfig.cmake should be generated after ELSI is successfully installed. This file
contains all the information about how the ELSI library and its dependencies should be included in an external project.
For a project using CMake, only two lines are required to find and link to ELSI:

find_package(elsi REQUIRED)

target_link_libraries(my_project PRIVATE elsi::elsi)

If a minimum version of ELSI is required, this information may be passed to “find package” by, e.g.:

find_package(elsi 2.0 REQUIRED)

2.4.2 Linking against ELSI: Makefile

For a project using makefiles, an example set of compiler flags to link against ELSI would be:
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ELSI_INCLUDE = -I/PATH/TO/BUILD/ELSI/include

ELSI_LIB = -L/PATH/TO/BUILD/ELSI/lib -lelsi \

-lfortjson -lOMM -lMatrixSwitch -lelpa \

-lNTPoly -lpexsi -lsuperlu_dist \

-lptscotchparmetis -lptscotch -lptscotcherr \

-lscotchmetis -lscotch -lscotcherr

Enabling/disabling PEXSI, EigenExa, SLEPc-SIPs, BSEPACK, MAGMA or linking ELSI against externally installed
solver libraries requires the user modify these flags accordingly.

2.4.3 Using ELSI

ELSI may be used in an electronic structure code by importing the appropriate header file. For codes written in Fortran,
this is done by using the ELSI module

use ELSI

For codes written in C, the ELSI wrapper may be imported by including the header file

#include <elsi.h>
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3 The ELSI API

3.1 Overview of the ELSI API

In this chapter, we present the public-facing API for the ELSI Interface. We anticipate that fine details of this interface
may change slightly in the future, but the fundamental structure of the interface layer is expected to remain consistent.
While this chapter serves as a reference to the ELSI subroutines, the user is encouraged to explore the demonstration
pseudo-codes of ELSI in Sec. 3.9.

To allow multiple instances of ELSI to co-exist within a single calling code, we define an elsi handle data type to
encapsulate the state of an ELSI instance, i.e., all runtime parameters associated with the ELSI instance. An elsi handle

instance is initialized with the elsi init subroutine and is subsequently passed to all other ELSI subroutine calls.

ELSI provides a C interface in addition to the native Fortran interface. The vast majority of this chapter, while written
from a Fortran standpoint, applies equally to both interfaces. Information specifically about the C wrapper for ELSI
may be found in Sec. 3.8.

In the source code of ELSI, there may exist subroutines that are not documented as public API here. Usage of those
undocumented subroutines is not recommended, as they are usually experimental and subject to modification or removal
without notice.

3.2 Setting Up ELSI

3.2.1 Initializing ELSI

The ELSI interface must be initialized via the elsi init subroutine before any other ELSI subroutine may be called.

elsi init(handle, solver, parallel mode, matrix format, n basis, n electron, n state)

Argument Data Type in/out Explanation
handle elsi handle out ELSI handle.
solver integer in 0: AUTO. 1: ELPA. 2: libOMM. 3: PEXSI. 4: EigenExa. 5: SLEPc-SIPs.

6: NTPoly. 7: MAGMA. 8: BSEPACK. See remark 1.
parallel mode integer in 0: SINGLE PROC. 1: MULTI PROC. See remark 4.
matrix format integer in 0: BLACS DENSE. 1: PEXSI CSC. 2: SIESTA CSC. 3: GENERIC COO. See

remark 2.
n basis integer in Number of basis functions, i.e. global size of Hamiltonian.
n electron real double in Number of electrons.
n state integer in Number of states. See remark 3.

Remarks

(1) solver: The “AUTO” option attempts to automate the solver selection procedure based on benchmarks performed and
experiences gained in the ELSI project. User-supplied information may assist in finding the optimal solver. In particular,
see elsi set dimensionality and elsi set energy gap in Sec. 3.5. Simply put, the solver selection favors ELPA for
small-and-medium-sized problems, PEXSI for large, sparse, low-dimensional problems, and NTPoly for extra-large, sparse
systems with a decent energy gap.
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When the ELPA solver is chosen for the “SINGLE PROC” parallel mode, the tridiagonalization and back-transformation
routines in LAPACK and the divide-and-conquer tridiagonal solver routine in ELPA are used.

The table below summarizes the supported problem types for each solver.

Solver Parallel Mode Matrix Format Data Type Problem Type
ELPA SINGLE PROC BLACS DENSE Real/complex KS-EV
ELPA MULTI PROC All Real/complex KS-EV/KS-DM
libOMM MULTI PROC All Real/complex KS-DM
PEXSI MULTI PROC All Real/complex KS-DM
EigenExa MULTI PROC All Real/complex KS-EV/KS-DM
SLEPc-SIPs MULTI PROC All Real KS-EV/KS-DM
NTPoly MULTI PROC All Real/complex KS-DM
MAGMA SINGLE PROC BLACS DENSE Real/complex KS-EV
BSEPACK MULTI PROC BLACS DENSE Real/complex BSE-EV

(2) matrix format: “BLACS DENSE” refers to a dense matrix format in a 2-dimensional block-cyclic distribution, i.e. the
BLACS standard. “PEXSI CSC” refers to a compressed sparse column (CSC) matrix format in a 1-dimensional block
distribution. “SIESTA CSC” refers to a compressed sparse column (CSC) matrix format in a 1-dimensional block-cyclic
distribution. As the Hamiltonian, overlap, and density matrices are symmetric (Hermitian), compressed sparse row
(CSR) matrix format is effectively supported. “GENERIC COO” refers to a coordinate (COO) sparse matrix format in an
arbitrary distribution. Please refer to Sec. 3.2.3 for specifications of these matrix formats.

(3) n state: If ELPA, EigenExa, SLEPc-SIPs, or MAGMA is the chosen solver, this parameter specifies the number of
eigenstates to solve. EigenExa internally computes all the eigenstates unless n state is 0. When n state is larger than
0 and smaller than n basis, ELSI simply discards the unwanted solutions. libOMM, PEXSI and NTPoly do not make
use of this parameter.

(4) parallel mode: The two parallelization modes, “SINGLE PROC” and “MULTI PROC”, allow for two parallelization
strategies commonly employed by electronic structure codes. See below.

4a) “SINGLE PROC”: Solves the KS eigenproblem following a LAPACK-like fashion. This option may only be selected
when ELPA or MAGMA is chosen as the solver. Every MPI task independently handles a group of k-points uniquely
assigned to it. Example: 16 k-points, 4 MPI tasks.

• MPI task 0 handles k-points 1, 2, 3, 4 sequentially;

• MPI task 1 handles k-points 5, 6, 7, 8 sequentially;

• MPI task 2 handles k-points 9, 10, 11, 12 sequentially;

• MPI task 3 handles k-points 13, 14, 15, 16 sequentially.

call elsi_init (eh, ..., parallel_mode=0, ...)

...

do i_kpt = 1, n_kpt_local

call elsi_ev_{real|complex} (eh, ham_this_kpt, ovlp_this_kpt, eval_this_kpt, evec_this_kpt)

end do

4b) “MULTI PROC”: Solves the KS eigenproblem following a ScaLAPACK-like fashion. Groups of MPI tasks coordinate
to handle the same k-point, uniquely assigned to that group. Example: 4 k-points, 16 MPI tasks.

• MPI tasks 0, 1, 2, 3 cooperatively handle k-point 1;

• MPI tasks 4, 5, 6, 7 cooperatively handle k-point 2;

• MPI tasks 8, 9, 10, 11 cooperatively handle k-point 3;

• MPI tasks 12, 13, 14, 15 cooperatively handle k-point 4.
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call elsi_init (eh, ..., parallel_mode=1, ...)

call elsi_set_mpi (eh, my_mpi_comm)

call elsi_set_kpoint (eh, n_kpt, my_kpt, my_weight)

call elsi_set_mpi_global (eh, mpi_comm_global)

...

call elsi_{ev|dm}_{real|complex} (eh, my_ham, my_ovlp, ...)

Please note that when there is more than one k-point, a global MPI communicator must be provided for inter-k-point
communications. See Sec. 3.2.4 for elsi set kpoint, elsi set spin, and elsi set mpi global, which are used to set
up a calculation with two spin channels and/or multiple k-points.

3.2.2 Setting Up MPI

The MPI communicator used by ELSI is passed into ELSI by the calling code via the elsi set mpi subroutine. When
there is more than one k-point and/or spin channel, this communicator is used only for solving one problem corresponding
to one k-point and one spin channel. See Sec. 3.2.4 for details.

elsi set mpi(handle, comm)

Argument Data Type in/out Explanation
handle elsi handle inout ELSI handle.
comm integer in MPI communicator.

3.2.3 Setting Up Matrix Formats

Four matrix formats are supported by ELSI, namely the 2D block-cyclic distributed dense matrix format (“BLACS DENSE”),
the 1D block distributed compressed sparse column format (“PEXSI CSC”), the 1D block-cyclic distributed compressed
sparse column format (“SIESTA CSC”), and the arbitrarily distributed coordinate sparse format (“GENERIC COO”).

When using the “BLACS DENSE” format, BLACS parameters are passed into ELSI via the elsi set blacs subroutine.
The matrix format used internally in the ELSI interface and the ELPA solver requires the block sizes of the 2-dimensional
block-cyclic distribution are the same in the row and column directions. It is necessary to call this subroutine before
calling any solver interface that makes use of the “BLACS DENSE” format.

elsi set blacs(handle, blacs ctxt, block size)

Argument Data Type in/out Explanation
handle elsi handle inout ELSI handle.
blacs ctxt integer in BLACS context.
block size integer in Block size of the 2D block-cyclic distribution, specifying both row and

column directions.

When using the “PEXSI CSC” or “SIESTA CSC” format, the sparsity pattern should be passed into ELSI via the elsi set csc

subroutine. It is necessary to call this subroutine before calling any solver interface that makes use of the CSC sparse
matrix formats.

elsi set csc(handle, global nnz, local nnz, local col, row idx, col ptr)

Argument Data Type in/out Explanation
handle elsi handle inout ELSI handle.
global nnz integer in Global number of non-zeros.
local nnz integer in Local number of non-zeros.
local col integer in Local number of matrix columns.
row idx 1D integer array in Local row index array. Dimension: local nnz.
col ptr 1D integer array in Local column pointer array. Dimension: local col+1.

The block size of the “PEXSI CSC” format cannot be set by the user. This is because the PEXSI solver requires that the
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block size must be floor(Nbasis/Nprocs), where floor(x) is the greatest integer less than or equal to x, Nbasis and Nprocs

are the number of basis functions and the number of MPI tasks, respectively. The block size of the “SIESTA CSC” format
must be explicitly set by calling elsi set csc blk.

elsi set csc blk(handle, block size)

Argument Data Type in/out Explanation
handle elsi handle inout ELSI handle.
global nnz integer in Block size of the 1D block-cyclic distribution.

In most cases, input and output matrices should be distributed across all MPI tasks. The only exception is when using the
PEXSI solver, the sparse density matrix interface elsi dm {real|complex} sparse, and the “PEXSI CSC” matrix format.
In this case, an additional parameter, pexsi np per pole, must be set by the user. Input and output matrices should
be 1D-block-distributed among the first pexsi np per pole MPI tasks (not all the MPI tasks). Please see Sec. 3.5.4 for
more information.

When using the “GENERIC COO” format, the sparsity pattern should be passed into ELSI via the elsi set coo subroutine.
It is necessary to call this subroutine before calling any solver interface that makes use of the COO sparse matrix format.
The distribution of matrix elements in the “GENERIC COO” format is arbitrary. Both sorted and unsorted inputs are
supported.

elsi set coo(handle, global nnz, local nnz, row idx, col idx)

Argument Data Type in/out Explanation
handle elsi handle inout ELSI handle.
global nnz integer in Global number of non-zeros.
local nnz integer in Local number of non-zeros.
row idx 1D integer array in Local row index array. Dimension: local nnz.
col idx 1D integer array in Local column index array. Dimension: local nnz.

3.2.4 Setting Up Multiple k-points and/or Spin Channels

When there is more than one k-point and/or spin channel in the physical system being simulated, the ELSI interface
can be set up to support parallel calculation of the k-points and/or spin channels. The base case is a system isolated
in space, e.g. free atoms, molecules, clusters, without spin-polarization. In this case, there is one eigenproblem in each
iteration of an SCF cycle. When a spin-polarized periodic system is considered, there is an index α denoting the spin
channel, and an index k denoting points in reciprocal space. In total, there are Nkpt × Nspin eigenproblems that can
be solved in an embarrassingly parallel fashion. In ELSI, these eigenproblems are considered as equivalent “unit tasks”.
The available computer processes are divided into Nkpt ×Nspin groups, each of which is responsible for one unit task.

To set up the ELSI interface for a calculation with more than one k-point and/or more than one spin channel, the
elsi set kpoint and/or elsi set spin subroutines are called to pass the required information into ELSI. The MPI
communicator for each unit task is passed into ELSI by calling elsi set mpi. In addition, a global MPI communicator
for all tasks is passed into ELSI by calling elsi set mpi global. Note that the current ELSI interface only supports
the case where the eigenproblems for all the k-points and spin channels are fully parallelized, i.e., there is no MPI task
handling more than one k-point and/or more than one spin channel. In ELSI, the two spin channels are always coupled
by a uniform chemical potential. The distribution of electrons among the two channels, and thus the net spin moment of
the system, cannot be specified. Calculations with a fixed, user-specified spin moment can be performed by initializing
two independent ELSI instances for the two spin channels.

In this version of ELSI, the SLEPc-SIPs eigensolver is not supported in spin-polarized and/or periodic calculations.

elsi set kpoint(handle, n kpt, i kpt, weight)

Argument Data Type in/out Explanation
handle elsi handle inout ELSI handle.
n kpt integer in Total number of k-points.
i kpt integer in Index of the k-point handled by this MPI task.
weight integer in Weight of the k-point handled by this MPI task.
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elsi set spin(handle, n spin, i spin)

Argument Data Type in/out Explanation
handle elsi handle inout ELSI handle.
n spin integer in Total number of spin channels.
i spin integer in Index of the spin channel handled by this MPI task.

elsi set mpi global(handle, comm global)

Argument Data Type in/out Explanation
handle elsi handle inout ELSI handle.
comm global integer in Global MPI communicator used for communications among all k-points

and spin channels.

3.2.5 Re-initializing ELSI

When a geometry update takes place in geometry optimization or molecular dynamics calculations, the overlap matrix
changes due to the movement of localized basis functions. Calling elsi reinit instructs ELSI to flush geometry-related
variables and arrays that cannot be used in the new geometry step, e.g., the overlap matrix and its sparsity pattern.
Other runtime parameters are kept within the ELSI instance and reused throughout multiple geometry steps. Note that
the chemical potential determination in PEXSI must be restarted for every new geometry. See Sec. 3.5.4 for details.

elsi reinit(handle)

Argument Data Type in/out Explanation
handle elsi handle inout ELSI handle.

3.2.6 Finalizing ELSI

When an ELSI instance is no longer needed, its associated handle should be cleaned up by calling elsi finalize.

elsi finalize(handle)

Argument Data Type in/out Explanation
handle elsi handle inout ELSI handle.

3.3 Solving Eigenvalues and Eigenvectors

elsi ev {real|complex}{ sparse} returns all the eigenvalues and a subset of eigenvectors of a generalized eigenproblem
defined in Eq. 1.1. See elsi set unit ovlp in Sec. 3.5.1 for standard eigenproblems. ELPA, EigenExa, SLEPc-SIPs, or
MAGMA may be selected as the solver when using these subroutines.

elsi ev real(handle, ham, ovlp, eval, evec)

Argument Data Type in/out Explanation
handle elsi handle inout ELSI handle.
ham 2D real double array inout Hamiltonian matrix in “BLACS DENSE” format. See remark

1.
ovlp 2D real double array inout Overlap matrix (or its Cholesky factorization) in

“BLACS DENSE” format. See remark 1.
eval 1D real double array inout Eigenvalues. See remark 2.
evec 2D real double array out Eigenvectors in “BLACS DENSE” format. See remark 3.
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elsi ev complex(handle, ham, ovlp, eval, evec)

Argument Data Type in/out Explanation
handle elsi handle inout ELSI handle.
ham 2D complex double array inout Hamiltonian matrix in “BLACS DENSE” format. See remark

1.
ovlp 2D complex double array inout Overlap matrix (or its Cholesky factorization) in

“BLACS DENSE” format. See remark 1.
eval 1D real double array inout Eigenvalues. See remark 2.
evec 2D complex double array out Eigenvectors in “BLACS DENSE” format. See remark 3.

elsi ev real sparse(handle, ham, ovlp, eval, evec)

Argument Data Type in/out Explanation
handle elsi handle inout ELSI handle.
ham 1D real double array inout Hamiltonian matrix in “PEXSI CSC”, “SIESTA CSC”, or

“GENERIC COO” sparse format.
ovlp 1D real double array inout Overlap matrix in “PEXSI CSC”, “SIESTA CSC”, or

“GENERIC COO” sparse format.
eval 1D real double array inout Eigenvalues. See remark 2.
evec 2D real double array out Eigenvectors in “BLACS DENSE” format. See remark 3.

elsi ev complex sparse(handle, ham, ovlp, eval, evec)

Argument Data Type in/out Explanation
handle elsi handle inout ELSI handle.
ham 1D complex double array inout Hamiltonian matrix in “PEXSI CSC”, “SIESTA CSC”, or

“GENERIC COO” sparse format.
ovlp 1D complex double array inout Overlap matrix in “PEXSI CSC”, “SIESTA CSC”, or

“GENERIC COO” sparse format.
eval 1D real double array inout Eigenvalues. See remark 2.
evec 2D complex double array out Eigenvectors in “BLACS DENSE” format. See remark 3.

Remarks

(1) When using elsi ev {real|complex} with ELPA or EigenExa, the Hamiltonian matrix is destroyed during the
computation, the overlap matrix is used to store its Cholesky factorization, which can be reused until the overlap
matrix changes. When using elsi ev {real|complex} sparse, the Cholesky factorization is stored internally in the
“BLACS DENSE” format.

(2) The dimension of eval should always be n basis, regardless of the choice of n state specified in elsi init.

(3) The number of eigenvectors to be computed by elsi ev {real|complex}{ sparse} is specified by n state in
elsi init. However, the local evec array should always be initialized to correspond to a global array of size n basis

by n basis, whose extra part is used as work space. When using elsi ev {real|complex} sparse, the eigenvectors are
returned in a dense format (“BLACS DENSE”), as they are in general not sparse.

elsi bse {real|complex} solves the Bethe-Salpeter eigenproblem

HBSC = CΣ. (3.1)

The BSE Hamiltonian HBS has the following structure

HBS =

[
A B

−BH AT

]
, (3.2)

where A and B are N by N matrices, HBS and C are therefore 2N by 2N matrices. H and T denote the conjugate
transpose and the transpose of a matrix, respectively. A = AH and B = BT. BSEPACK must be selected as the solver
when using these subroutines.
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elsi bse real(handle, A, B, eval, evec)

Argument Data Type in/out Explanation
handle elsi handle inout ELSI handle.
A 2D real double array inout Matrix A in “BLACS DENSE” format.
B 2D real double array in Matrix B in “BLACS DENSE” format.
eval 1D real double array out Eigenvalues.
evec 2D real double array out Eigenvectors in “BLACS DENSE” format. See remark 1.

elsi bse complex(handle, A, B, eval, evec)

Argument Data Type in/out Explanation
handle elsi handle inout ELSI handle.
A 2D complex double array inout Matrix A in “BLACS DENSE” format.
B 2D complex double array in Matrix B in “BLACS DENSE” format.
eval 1D real double array out Eigenvalues.
evec 2D complex double array out Eigenvectors in “BLACS DENSE” format. See remark 1.

Remarks

(1) The global dimension of evec should be 2N by 2N.

3.4 Computing Density Matrices

elsi dm {real|complex}{ sparse} returns the density matrix computed from the provided H and S matrices, as well
as the band structure energy.

elsi dm real(handle, ham, ovlp, dm, e bs)

Argument Data Type in/out Explanation
handle elsi handle inout ELSI handle.
ham 2D real double array inout Hamiltonian matrix in “BLACS DENSE” format.
ovlp 2D real double array inout Overlap matrix (or Cholesky factorization) in

“BLACS DENSE” format. See remark 1.
dm 2D real double array out Density matrix in “BLACS DENSE” format.
e bs real double out Band structure energy.

elsi dm complex(handle, ham, ovlp, dm, e bs)

Argument Data Type in/out Explanation
handle elsi handle inout ELSI handle.
ham 2D complex double array inout Hamiltonian matrix in “BLACS DENSE” format.
ovlp 2D complex double array inout Overlap matrix (or its Cholesky factorization) in

“BLACS DENSE” format. See remark 1.
dm 2D complex double array out Density matrix in “BLACS DENSE” format.
e bs real double out Band structure energy.

elsi dm real sparse(handle, ham, ovlp, dm, e bs)

Argument Data Type in/out Explanation
handle elsi handle inout ELSI handle.
ham 1D real double array inout Hamiltonian matrix in “PEXSI CSC”, “SIESTA CSC”, or

“GENERIC COO” sparse format.
ovlp 1D real double array inout Overlap matrix in “PEXSI CSC”, “SIESTA CSC”, or

“GENERIC COO” sparse format.
dm 1D real double array out Density matrix in “PEXSI CSC”, “SIESTA CSC”, or

“GENERIC COO” sparse format.
e bs real double out Band structure energy.
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elsi dm complex sparse(handle, ham, ovlp, dm, e bs)

Argument Data Type in/out Explanation
handle elsi handle inout ELSI handle.
ham 1D complex double array inout Hamiltonian matrix in “PEXSI CSC”, “SIESTA CSC”, or

“GENERIC COO” sparse format.
ovlp 1D complex double array inout Overlap matrix in “PEXSI CSC”, “SIESTA CSC”, or

“GENERIC COO” sparse format.
dm 1D complex double array out Density matrix in “PEXSI CSC”, “SIESTA CSC”, or

“GENERIC COO” sparse format.
e bs real double out Band structure energy.

Remarks

(1) When using elsi dm {real|complex} with ELPA, libOMM, or EigenExa, the Hamiltonian matrix is destroyed during
the computation. The overlap matrix is used to store its Cholesky factorization, which can be reused until the overlap
matrix changes.

3.5 Customizing ELSI

ELSI provides reasonable default values for parameters used in the ELSI interface and the supported solvers. However,
no set of default parameters can adequately cover all use cases. Parameters that can be adjusted are described in the
following subsections.

3.5.1 Customizing the ELSI Interface

In all the subroutines listed below, the first argument (input and output) is an elsi handle. The second argument
(input) of each subroutine is the name of parameter to set. Note that logical variables are not used in ELSI API. Integers
are used to represent logical, with 0 being false and any positive integer being true.

elsi set output(handle, output level)
elsi set output unit(handle, output unit)
elsi set output log(handle, output log)
elsi set save ovlp(handle, save ovlp)
elsi set unit ovlp(handle, unit ovlp)
elsi set zero def(handle, zero def)
elsi set sparsity mask(handle, sparsity mask)
elsi set illcond check(handle, illcond check)
elsi set illcond tol(handle, illcond tol)
elsi set spin degeneracy(handle, spin degeneracy)
elsi set energy gap(handle, energy gap)
elsi set spectrum width(handle, spectrum width)
elsi set dimensionality(handle, dimensionality)
elsi set mu broaden scheme(handle, mu broaden scheme)
elsi set mu broaden width(handle, mu broaden width)
elsi set mu tol(handle, mu tol)
elsi set mu mp order(handle, mu mp order)
elsi set n frozen(handle, n frozen)
elsi set frozen idx(handle, frozen idx)

Argument Data Type Default Explanation
output level integer 0 0: No output. 1: Informative output from ELSI. 2: Informative

output from ELSI and the solvers. 3: Informative and debug-
ging output from ELSI and the solvers.

output unit integer 6 Unit used by ELSI to write out information.
output log integer 0 If not 0, a separate JSON log file will be written out.
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save ovlp integer 0 If not 0, the overlap matrix will be saved for density matrix
extrapolation.

unit ovlp integer 0 If not 0, the overlap matrix is treated as an identity (unit) ma-
trix. See remark 1.

zero def real double 10−15 When converting a matrix from dense to sparse format, values
below this threshold are discarded.

sparsity mask integer 2 Which sparsity pattern to use when converting a matrix from
dense to sparse format. 0: The union of the sparsity patterns
of the Hamiltonian and overlap matrices. 1: The sparsity pat-
tern of the Hamiltonian matrix. 2: The sparsity pattern of the
overlap matrix.

illcond check integer 0 If not 0, the eigenvalues of the overlap matrix will be calculated
to check if the overlap matrix is ill-conditioned. See remark 2.

illcond tol real double 10−5 Eigenfunctions of the overlap matrix with eigenvalues smaller
than this threshold will be removed to avoid ill-conditioning.
See remark 2.

spin degeneracy real double 2.0/n spin Spin degeneracy that controls the maximum number of electrons
on a state.

energy gap real double 0 Energy gap. See remark 3.
spectrum width real double 103 Width of the eigenspectrum. See remark 3.
dimensionality integer 3 Dimensionality (1, 2, or 3) of the physical system being simu-

lated. Only used for automatic solver selection.
mu broaden scheme integer 0 Broadening scheme employed to compute the occupation num-

bers and the Fermi level. 0: Gaussian. 1: Fermi-Dirac. 2:
Methfessel-Paxton. 4: Marzari-Vanderbilt. See remark 4.

mu broaden width real double 0.01 Broadening width employed to compute the occupation numbers
and the Fermi level. See remark 5.

mu tol real double 10−13 Convergence tolerance (in terms of the absolute error in elec-
tron count) of the bisection algorithm employed to compute the
occupation numbers and the Fermi level.

mu mp order integer 0 Order of the Methfessel-Paxton broadening scheme. No effect if
Methfessel-Paxton is not used.

n frozen integer 0 Number of states to be treated as “frozen” when using
elsi ev {real|complex} with ELPA or LAPACK.

frozen idx 1D integer
array

- List of indices of states to be frozen. Only relevant if n frozen

is set. By default, the first n frozen states are frozen.

Remarks

(1) If the overlap matrix is an identity matrix, all settings related to the singularity (ill-conditioning) check are ignored.
The ovlp passed into elsi {ev|dm} {real|complex}{ sparse} is not referenced.

(2) If the ill-conditioning check is not disabled, in the first iteration of each SCF cycle, all eigenvalues of the overlap
matrix are computed. If there is any eigenvalue smaller than illcond tol, the matrix is considered to be ill-conditioned.

(3) spectrum width and energy gap refer to the width and the gap of the eigenspectrum. Simply use the default values
if there is no better estimate.

(4) mu broaden scheme, mu broaden width, and mu tol are only referenced when using elsi dm {real|complex}{ sparse}
and an eigensolver. They are ignored when using elsi ev {real|complex}{ sparse}, or elsi dm {real|complex}{ sparse}
with a density matrix solver.

(5) In all supported broadening schemes, there is a term (ε−EF)/W in the distribution function, where ε is the energy
of an eigenstate, and EF is the Fermi level. broadening width should be W in the same unit of ε and EF.
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3.5.2 Customizing the ELPA Solver

elsi set elpa solver(handle, elpa solver)
elsi set elpa n single(handle, elpa n single)
elsi set elpa gpu(handle, elpa gpu)
elsi set elpa autotune(handle, elpa autotune)
elsi set elpa gpu kernels(handle, elpa gpu kernels)

Argument Data Type Default Explanation
elpa solver integer 2 1: One-stage solver. 2: Two-stage solver (recommended).
elpa n single integer 0 Number of SCF steps using single precision ELPA to solve stan-

dard eigenproblems. See remark 1.
elpa gpu integer 0 If not 0, enable GPU-acceleration in ELPA. See remark 2.
elpa autotune integer 1 If not 0, enable auto-tuning of runtime parameters in ELPA.

Not compatible with illcond check.

Remarks

(1) elpa n single: If single precision arithmetic is available in an externally complied ELPA library, it may be enabled
by setting elpa n single to a positive integer, then the standard eigenproblems in the first elpa n single SCF steps are
solved with single precision. The transformations between generalized eigenproblem and the standard form are always
performed with double precision. Although this keyword accelerates the solution of standard eigenproblems, the overall
SCF convergence may be slower, depending on the physical system and the SCF settings used in the electronic structure
code.

(2) elpa gpu: If ELPA is compiled with GPU support, GPU acceleration may be enabled by setting elpa gpu to a
nonzero integer. This keyword is ignored if no GPU support is available.

3.5.3 Customizing the libOMM Solver

elsi set omm flavor(handle, omm flavor)
elsi set omm n elpa(handle, omm n elpa)
elsi set omm tol(handle, omm tol)

Argument Data Type Default Explanation
omm flavor integer 0 0: Direct minimization of a generalized eigenproblem. 2:

Cholesky factorization of the overlap matrix transforming the
generalized eigenproblem to the standard form.

omm n elpa integer 6 Number of SCF steps using ELPA. See remark 1.
omm tol real double 10−12 Convergence tolerance of orbital minimization. See remark 2.

Remarks

(1) omm n elpa: It has been demonstrated that OMM is optimal at later stages of an SCF cycle where the electronic
structure is closer to its local minimum, requiring only one CG iteration to converge the minimization of the OMM
energy functional. It is therefore recommended to use ELPA for omm n elpa SCF steps before switching to libOMM.

(2) omm tol: A large minimization tolerance leads to a faster convergence, at the price of a lower accuracy. omm tol

should be tested and chosen to balance the desired accuracy and computation time.
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3.5.4 Customizing the PEXSI Solver

elsi set pexsi method(handle, pexsi method)
elsi set pexsi n pole(handle, pexsi n pole)
elsi set pexsi n mu(handle, pexsi n mu)
elsi set pexsi np per pole(handle, pexsi np per pole)
elsi set pexsi np symbo(handle, pexsi np symbo)
elsi set pexsi temp(handle, pexsi temp)
elsi set pexsi mu min(handle, pexsi mu min)
elsi set pexsi mu max(handle, pexsi mu max)
elsi set pexsi inertia tol(handle, pexsi inertia tol)

Argument Data Type Default Explanation
pexsi method integer 3 1: Contour integral [12]. 2: Minimax rational approxima-

tion [27]. 3: Adaptive Antoulas-Anderson (AAA) [28]. See
remark 1.

pexsi n pole integer 30 Number of poles used by PEXSI. See remark 1.
pexsi n mu integer 2 Number of mu points used by PEXSI. See remark 2.
pexsi np per pole integer - Number of MPI tasks assigned to one pole. See remark 3.
pexsi np symbo integer 1 Number of MPI tasks for symbolic factorization. See remark 4.
pexsi temp real double 0.002 Electronic temperature. See remark 5.
pexsi inertia tol real double 0.05 Stopping criterion of inertia counting. See remark 6.
pexsi mu min real double -10.0 Lower bound of mu. See remark 7.
pexsi mu max real double 10.0 Upper bound of mu. See remark 7.

Remarks

(1) When using the pole expansion method based on contour integral, allowed numbers for pexsi n pole are: 10, 20,
30, ..., 110, 120. 60 to 100 poles are typically needed to get an accuracy that is comparable with the result obtained
from diagonalization. When using the minimax rational approximation or the Adaptive Antoulas-Anderson method,
allowed numbers for pexsi n pole are: 10, 15, 20, ..., 35, 40. 20 to 30 poles are typically needed to get an accuracy
that is comparable with the result obtained from diagonalization. PEXSI outputs an error message when it detects an
unsupported choice of number of poles.

The electronic entropy can only be computed with the contour integral method and the Adaptive Antoulas-Anderson
method. It may be accessed via elsi get entropy.

(2) PEXSI determines the chemical potential by performing Fermi operator expansion at several chemical potential values
(referred to as “points”) in an SCF step, then interpolating the results at all points to the final answer. The pexsi n mu

parameter controls the number of chemical potential “points” to be evaluated. Two points followed by a simple linear
interpolation often yield reasonable results.

(3) pexsi np per pole: PEXSI has three levels of parallelism: the first level evaluates the Fermi operator at all the
chemical potential points in parallel; at each chemical potential point, the second level handles the poles in parallel;
finally, for each pole, parallel selected inversion is performed as the third level. The value of pexsi np per pole is the
number of MPI tasks assigned to one pole at one chemical potential point for the parallel selected inversion. Ideally,
the total number of MPI tasks should be pexsi np per pole × pexsi n mu × pexsi n pole, i.e., all the three levels of
parallelism are fully exploited. In case that this is not feasible, PEXSI can also process the poles in serial, whereas all
the chemical potential points must be evaluated simultaneously. The user should make sure that the total number of
MPI tasks is divisible by the product of the number of MPI tasks per pole and the number of points.

When not using the “PEXSI CSC” matrix format, pexsi np per pole can be automatically determined to balance the
three levels of parallelism in PEXSI. Please note that when using the “PEXSI CSC” matrix format together with the
PEXSI solver, input and output matrices should be distributed among the first pexsi np per pole MPI tasks (not
all) in a 1D block distribution. The block size of the distribution must be floor(Nbasis/Nprocs per pole), where floor(x) is
the greatest integer less than or equal to x, Nbasis and Nprocs per pole are the number of basis functions and the value
of pexsi np per pole, respectively. When using the “PEXSI CSC” matrix format with the ELPA, libOMM, EigenExa,
SLEPc-SIPs, or NTPoly solver, input and output matrices should be distributed across all the MPI tasks in a 1D block
distribution. Again, the block size of the distribution must be floor(Nbasis/Nprocs).
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(4) pexsi np symbo: Unless there is a memory bottleneck, using 1 MPI task for matrix reordering and symbolic factor-
ization is favorable. When running in serial, the matrix reordering in PT-SCOTCH or ParMETIS introduces a minimal
number of “fill-ins” to the factorized matrices. Using more MPI tasks introduces more fill-ins. As the matrix reordering
and symbolic factorization are performed only once per SCF cycle (with a fixed overlap matrix), using 1 MPI task
should not affect the overall timing too much. On the other hand, more fill-ins lead to slower numerical factorization
in every SCF step. In addition, the number of MPI tasks used for matrix reordering and symbolic factorization cannot
be too large. Otherwise, the symbolic factorization may fail. Therefore, the default number of MPI tasks for symbolic
factorization is 1. It is worth testing and increasing this number for large-scale calculations.

(5) pexsi temp: This value corresponds to the kBT term (not T ) in the Fermi-Dirac distribution function.

(6) The chemical potential determination in PEXSI relies on an inertia counting step to narrow down the chemical
potential searching interval in the first few SCF steps. The inertia counting step is skipped if the difference between
pexsi mu min and pexsi mu max becomes smaller than pexsi inertia tol.

(7) PEXSI performs Fermi operator calculations at a number of points within the chemical potential search interval,
based on which the chemical potential is determined. In the first SCF iteration of each geometry step, pexsi mu min and
pexsi mu max should be set to safe values that guarantee the true chemical potential lies in this interval. Then, for the
nth SCF step, pexsi mu min should be set to (µn-1

min +∆Vmin), pexsi mu max should be set to (µn-1
max +∆Vmax). Here, µn-1

min

and µn-1
max are the lower bound and the upper bound of the chemical potential, determined by PEXSI in the (n-1)th SCF

step. They can be retrieved by calling elsi get pexsi mu min and elsi get pexsi mu max, respectively (see Sec. 3.6.2).
Suppose the effective potential (Hartree potential, exchange-correlation potential, and external potential) is stored in an
array V , whose dimension is the number of grid points. From one SCF iteration to the next, ∆V denotes the potential
change, and ∆Vmin and ∆Vmax are the minimum and maximum values in the array ∆V , respectively. The whole process
is summarized in the pseudo-code below. The (re-)initialization and finalization of ELSI are omitted.

do geometry update

mu_min = -10.0

mu_max = 10.0

delta_V_min = 0.0

delta_V_max = 0.0

do SCF cycle

Update Hamiltonian

call elsi_set_pexsi_mu_min (eh, mu_min + delta_V_min)

call elsi_set_pexsi_mu_max (eh, mu_max + delta_V_max)

call elsi_dm_{real|complex} (eh, ham, ovlp, dm, bs_energy)

call elsi_get_pexsi_mu_min (eh, mu_min)

call elsi_get_pexsi_mu_max (eh, mu_max)

Update electron density

Update potential

delta_V_min = minval (V_new - V_old)

delta_V_max = maxval (V_new - V_old)

Check SCF convergence

end do

end do

(8) pexsi gap: The PEXSI method does not require an energy gap. Use the default value if no knowledge is available.
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3.5.5 Customizing the EigenExa Solver

elsi set eigenexa method(handle, eigenexa method)

Argument Data Type Default Explanation
eigenexa method integer 2 1: Tridiagonalization solver eigen s. 2: Pentadiagonalization

solver eigen sx. The latter is usually faster and more scalable.

3.5.6 Customizing the SLEPc-SIPs Solver

elsi set sips ev min(handle, sips ev min)
elsi set sips ev max(handle, sips ev max)
elsi set sips n elpa(handle, sips n elpa)
elsi set sips n slice(handle, sips n slice)
elsi set sips interval(handle, sips lower, sips upper)

Argument Data Type Default Explanation
sips ev min real double -2.0 Lower bound of eigenspectrum. See remark 1.
sips ev max real double 2.0 Upper bound of eigenspectrum. See remark 1.
sips n elpa integer 0 Number of SCF steps using ELPA. See remark 2.
sips n slice integer 1 Number of slices. See remark 3.

Remarks

(1) sips ev min and sips ev max: SLEPc-SIPs relies on an inertia counting step to estimate the lower and upper bounds
of the eigenspectrum. Only eigenvalues within this interval, and their associated eigenvectors, are solved. The inertia
counting starts from the interval determined by sips ev min and sips ev max. This interval may expand or shrink to
make sure that it encloses the 1st to the n stateth eigenvalues. If a good estimate of the lower or upper bounds of the
eigenspectrum is available, it should be set by elsi set sips ev min or elsi set sips ev max.

(2) sips n elpa: The performance of SLEPc-SIPs mainly depends on the load balance across slices. Optimal performance
is expected if the desired eigenvalues are evenly distributed across slices. In an SCF calculation, eigenvalues obtained in
one SCF step can be used as an approximate distribution of eigenvalues in the next SCF step. This approximation should
become better as the SCF cycle approaches its convergence. Using the direct eigensolver ELPA in the first sips n elpa

SCF steps can circumvent the load imbalance of spectrum slicing in the initial SCF steps.

(3) sips n slice: SLEPc-SIPs partitions the eigenspectrum into slices and solves the slices in parallel. The number of
slices is controlled by sips n slice. The default value, 1, should always work, but by no means leads to the optimal
performance of the solver. There are some general rules to set this parameter. First, as a requirement of the SLEPc
library, the total number of MPI tasks must by divisible by sips n slice. Second, setting sips n slice to the number
of compute nodes usually yields better performance, as the inter-node communication is minimized. The optimal value
of sips n slice depends on the actual problem as well as the hardware.

3.5.7 Customizing the NTPoly Solver

elsi set ntpoly method(handle, ntpoly method)
elsi set ntpoly filter(handle, ntpoly filter)
elsi set ntpoly tol(handle, ntpoly tol)

Argument Data Type Default Explanation
ntpoly method integer 2 0: Canonical purification [29]. 1: 2nd order trace resetting pu-

rification [30]. 2: 4th order trace resetting purification [30]. 3:
Generalized hole-particle canonical purification [31]. 1 and 2 are
recommended.

ntpoly filter real double 10−15 When performing sparse matrix multiplications, values below
this filter are discarded. See remark 1.

ntpoly tol real double 10−8 Convergence tolerance of purification. See remark 1.
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Remarks

(1) ntpoly filter and ntpoly tol control the accuracy and computational cost of a density matrix purification method.
Tight choices of ntpoly filter and ntpoly tol, e.g. the default values here, lead to highly accurate results that are
comparable to the results obtained from diagonalization. However, linear scaling can only be achieved with a relatively
large ntpoly filter such as 10−6. Note that the purification may not converge if ntpoly filter is too large relative
to ntpoly tol. Setting ntpoly filter to be ≤ 10−3× ntpoly tol is safe in most cases.

3.5.8 Customizing the MAGMA Solver

elsi set magma solver(handle, magma solver)

Argument Data Type Default Explanation
magma solver integer 1 1: One-stage solver. 2: Two-stage solver.

Remarks

(1) MAGMA can use multiple GPUs, controlled by the environment variable MAGMA NUM GPUS. Refer to the users’ guide
of MAGMA for more information.

3.6 Getting Additional Results from ELSI

In Sec. 3.3 and Sec. 3.4, the interfaces to compute and return the eigensolutions and the density matrices have been
introduced. ELSI and the solvers may perform additional calculations whose results are useful at a certain stage of a
calculation. One example is the energy-weighted density matrix that is employed to evaluate the Pulay forces during
a geometry optimization calculation. The subroutines introduced in the following subsections are used to retrieve such
additional results from ELSI.

3.6.1 Getting Results from the ELSI Interface

In all the subroutines listed below, the first argument (input and output) is an elsi handle. The second argument
(output) of each subroutine is the name of the parameter to get.

elsi get version(major, minor, patch)
elsi get datestamp(date stamp)
elsi get initialized(handle, handle init)
elsi get n illcond(handle, n illcond)
elsi get ovlp ev min(handle, ev min)
elsi get ovlp ev max(handle, ev max)
elsi get mu(handle, mu)
elsi get entropy(handle, ts)
elsi get edm real(handle, edm real)
elsi get edm complex(handle, edm complex)
elsi get edm real sparse(handle, edm real sparse)
elsi get edm complex sparse(handle, edm complex sparse)
elsi get eval(handle, eval)
elsi get evec real(handle, evec real)
elsi get evec complex(handle, evec complex)
elsi get occ(handle, occ)

Argument Data Type Explanation
major integer Major version number.
minor integer Minor version number.
patch integer Patch level.
date stamp integer Date stamp of ELSI (yyyymmdd).
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handle init integer 0 if the ELSI handle has not been initialized; 1 if initial-
ized.

n illcond integer Number of eigenvalues of the overlap matrix that are
smaller than the ill-conditioning tolerance. See Sec. 3.5.1.

ovlp ev min real double Lowest eigenvalue of the overlap matrix. See remark 1.
ovlp ev max real double Highest eigenvalue of the overlap matrix. See remark 1.
mu real double Chemical potential. See remark 2.
ts real double Entropy. See remark 2.
edm real 2D real double array Energy-weighted density matrix in “BLACS DENSE” for-

mat. See remark 3.
edm complex 2D complex double array Energy-weighted density matrix in “BLACS DENSE” for-

mat. See remark 3.
edm real sparse 1D real double array Energy-weighted density matrix in “PEXSI CSC”,

“SIESTA CSC”, or “GENERIC COO” sparse format. See
remark 3.

edm complex sparse 1D complex double array Energy-weighted density matrix in “PEXSI CSC”,
“SIESTA CSC”, or “GENERIC COO” sparse format. See
remark 3.

eval 1D real double array Eigenvalues. See remark 4.
evec real 2D real double array Eigenvectors in “BLACS DENSE” format. See remark 4.
evec complex 2D complex double array Eigenvectors in “BLACS DENSE” format. See remark 4.
occ 1D real double array Occupation numbers. See remark 4.

Remarks

(1) Ill-conditioning check of the overlap matrix is enabled by default when ELPA is the chosen solver. It may be disabled
by calling elsi set illcond check, and is automatically disabled when the chosen solver is not ELPA. ovlp ev min

and ovlp ev max are computed only if ill-conditioning check is enabled. Otherwise the return value may be zero.

(2) The chemical potential is available only if elsi dm {real|complex}{ sparse} has been called, with ELPA, PEXSI,
SLEPc-SIPs, EigenExa, or NTPoly being the chosen solver. The entropy is available only if elsi dm {real|complex}{ sparse}
has been called with ELPA, PEXSI (see also elsi set pexsi method), SLEPc-SIPs, or EigenExa being the chosen solver.
ELSI may return zero when the chemical potential or the entropy is not available.

(3) In general, the energy-weighted density matrix is only needed in a late stage of an SCF cycle to evaluate forces.
It is, therefore, not calculated when any of the density matrix solver interface is called. When the energy-weighted
density matrix is actually needed, it can be requested by calling elsi get edm {real|complex}{ sparse}. These
subroutines have the requirement that the corresponding elsi dm subroutine must have been invoked. For instance,
elsi get edm real sparse only makes sense if elsi dm real sparse has been successfully executed.

(4) When using elsi dm {real|complex}{ sparse} with an eigensolver, ELSI computes and stores the eigenvalues,
eigenvectors, and occupation numbers. They may be accessed by calling elsi get eval, elsi get evec {real|complex},
and elsi get occ. The dimension of eval and occ should be equal to the value of n states set in elsi init. Even
with elsi dm {real|complex} sparse, the eigenvectors are returned in a dense format (“BLACS DENSE”), as they are
in general not sparse. The size of evec {real|complex} should always correspond to a global array of size n basis by
n basis, regardless of the value of n states.

3.6.2 Getting Results from the PEXSI Solver

elsi get pexsi mu min(handle, pexsi mu min)
elsi get pexsi mu max(handle, pexsi mu max)

Argument Data Type Explanation
pexsi mu min real double Minimum value of mu. See remark 1.
pexsi mu max real double Maximum value of mu. See remark 1.

Remarks
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(1) Please refer to Sec. 3.5.4 for the chemical potential determination algorithm in PEXSI and ELSI.

3.6.3 Extrapolation of Wavefunctions and Density Matrices

In geometry optimization and molecular dynamics calculations, the initial guess of the electron density in the (n+1)th

geometry step can be constructed from the wavefunctions or density matrix calculated in the nth geometry step. However,
due to the movement of atoms and localized basis functions around them, wavefunctions obtained in the nth geometry
step are no longer orthonormalized in the (n+1)th geometry step. elsi orthonormalize ev {real|complex}{ sparse}
orthonormalizes eigenvectors (coefficients of wavefunctions) in the nth geometry step with respect to the overlap matrix
in the (n+1)th geometry step with a Gram-Schmidt algorithm.

elsi orthonormalize ev real(handle, ovlp, evec)

Argument Data Type in/out Explanation
handle elsi handle inout ELSI handle.
ovlp 2D real double array in Overlap matrix in “BLACS DENSE” format.
evec 2D real double array inout Eigenvectors in “BLACS DENSE” format.

elsi orthonormalize ev complex(handle, ovlp, evec)

Argument Data Type in/out Explanation
handle elsi handle inout ELSI handle.
ovlp 2D complex double array in Overlap matrix in “BLACS DENSE” format.
evec 2D complex double array inout Eigenvectors in “BLACS DENSE” format.

elsi orthonormalize ev real sparse(handle, ovlp, evec)

Argument Data Type in/out Explanation
handle elsi handle inout ELSI handle.
ovlp 1D real double array in Overlap matrix in “PEXSI CSC”, “SIESTA CSC”, or

“GENERIC COO” sparse format.
evec 2D real double array inout Eigenvectors in “BLACS DENSE” format. See remark 1.

elsi orthonormalize ev complex sparse(handle, ovlp, evec)

Argument Data Type in/out Explanation
handle elsi handle inout ELSI handle.
ovlp 1D complex double array in Overlap matrix in “PEXSI CSC”, “SIESTA CSC”, or

“GENERIC COO” sparse format.
evec 2D complex double array inout Eigenvectors in “BLACS DENSE” format. See remark 1.

Remarks

(1) Even when using elsi orthonormalize ev {real|complex} sparse, the eigenvectors are still stored in a dense
format (“BLACS DENSE”), as they are in general not sparse.

elsi extrapolate dm {real|complex}{ sparse} extrapolates density matrix in the nth geometry step to the overlap
matrix in the (n+1)th geometry step. elsi set save ovlp must have been called to store the relevant matrices in the
nth geometry step within ELSI.

elsi extrapolate dm real(handle, ovlp, dm)

Argument Data Type in/out Explanation
handle elsi handle inout ELSI handle.
ovlp 2D real double array in New overlap matrix in “BLACS DENSE” format.
dm 2D real double array out New density matrix in “BLACS DENSE” format.
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elsi extrapolate dm complex(handle, ovlp, dm)

Argument Data Type in/out Explanation
handle elsi handle inout ELSI handle.
ovlp 2D complex double array in New overlap matrix in “BLACS DENSE” format.
dm 2D complex double array out New density matrix in “BLACS DENSE” format.

elsi extrapolate dm real sparse(handle, ovlp, dm)

Argument Data Type in/out Explanation
handle elsi handle inout ELSI handle.
ovlp 1D real double array in New overlap matrix in “PEXSI CSC”, “SIESTA CSC”, or

“GENERIC COO” sparse format.
dm 1D real double array out New density matrix in “PEXSI CSC”, “SIESTA CSC”, or

“GENERIC COO” sparse format.

elsi extrapolate dm complex sparse(handle, ovlp, dm)

Argument Data Type in/out Explanation
handle elsi handle inout ELSI handle.
ovlp 1D complex double array in New overlap matrix in “PEXSI CSC”, “SIESTA CSC”, or

“GENERIC COO” sparse format.
dm 1D complex double array out New density matrix in “PEXSI CSC”, “SIESTA CSC”, or

“GENERIC COO” sparse format.

3.7 Parallel Matrix I/O

The ELSI interface is able to read and write distributed matrices in parallel. There exist a number of libraries for high-
performance parallel I/O that are particularly capable of reading and writing a large amount of data with hierarchical
structures and complex metadata. However, the data structure in ELSI is simply arrays that represent matrices, with a
few integers to define the dimension of the matrices. In order to circumvent the development and performance overhead
associated with a high level I/O library, ELSI directly uses the parallel I/O functionality defined in the MPI standard.

Writing the distributed matrices into Nprocs separate files, where Nprocs is the number of MPI tasks, is not preferred, as
manipulating a large number of files would be difficult. The implementation of matrix I/O in ELSI adopts collective MPI
I/O routines to write data to (read data from) a single binary file, as if the data was gathered onto a single MPI task then
written to one file (read from one file by one MPI task then scattered to all tasks). The optimal I/O performance, both
with MPI I/O and in general, is achieved by making large and contiguous requests to access the file system. Therefore,
ELSI always redistributes the matrices to a 1D block distribution before writing it to file. This guarantees that each MPI
task writes a contiguous chunk of data to a contiguous piece of file. Similarly, matrices read from file are in a 1D block
distribution, and can be redistributed automatically if needed. ELSI always stores matrices in a sparse CSC format. The
conversion between dense and sparse formats is handled automatically.

3.7.1 Setting Up Matrix I/O

An elsi rw handle must be initialized via the elsi init rw subroutine before any other matrix I/O subroutine may
be called. This elsi rw handle must be passed to all other matrix I/O subroutine calls.

elsi init rw(handle, task, parallel mode, n basis, n electron)

Argument Data Type in/out Explanation
handle elsi rw handle out ELSI matrix I/O handle.
task integer in 0: READ MATRIX. 1: WRITE MATRIX.
parallel mode integer in 0: SINGLE PROC. 1: MULTI PROC. See elsi init.
n electron real double in Number of electrons. See remark 1.
n basis integer in Number of basis functions, i.e. global size of matrix.
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Remarks

(1) n electron: Matrices written out with ELSI matrix I/O are usually from actual electronic structure calculations.
Having the number of electrons available makes the matrix file useful for testing density matrix solvers such as PEXSI.
Therefore, it is recommended to set the correct number of electrons when initializing an matrix I/O handle, although
setting it to an arbitrary number does not affect the matrix I/O operation.

(2) n basis: This can be set to an arbitrary value if task is “READ MATRIX”. Its value is read from file when calling
elsi read mat dim or elsi read mat dim sparse.

The MPI communicator which encloses the MPI tasks to perform the matrix I/O operation needs to be passed into ELSI
via the elsi set rw mpi subroutine.

elsi set rw mpi(handle, comm)

Argument Data Type in/out Explanation
handle elsi rw handle inout ELSI matrix I/O handle.
comm integer in MPI communicator.

When reading or writing a dense matrix, BLACS parameters are passed into ELSI via the elsi set rw blacs subroutine.

elsi set rw blacs(handle, blacs ctxt, block size)

Argument Data Type in/out Explanation
handle elsi rw handle inout ELSI matrix I/O handle.
blacs ctxt integer in BLACS context.
block size integer in Block size of the 2D block-cyclic distribution, specifying both row

and column directions.

When writing a sparse matrix, its dimensions are passed into ELSI via the elsi set rw csc subroutine. The only sparse
matrix format currently supported by ELSI matrix I/O is the “PEXSI CSC” format. When reading a sparse matrix,
there is no need to call this subroutine. The relevant parameters are read from file when calling elsi read mat dim or
elsi read mat dim sparse.

elsi set rw csc(handle, global nnz, local nnz, local col)

Argument Data Type in/out Explanation
handle elsi rw handle inout ELSI matrix I/O handle.
global nnz integer in Global number of non-zeros.
local nnz integer in Local number of non-zeros.
local col integer in Local number of matrix columns.

When a matrix I/O instance is no longer needed, its associated handle should be cleaned up by calling elsi finalize rw.

elsi finalize rw(handle)

Argument Data Type in/out Explanation
handle elsi rw handle inout ELSI matrix I/O handle.

3.7.2 Writing Matrices

elsi write mat {real|complex} writes a dense matrix to file. Before writing a dense matrix, MPI and BLACS should
be set up properly using elsi set rw mpi and elsi set rw blacs.

elsi write mat real(handle, filename, mat)

Argument Data Type in/out Explanation
handle elsi rw handle in ELSI matrix I/O handle.
filename string in Name of file to write.
mat 2D real double array in Matrix in “BLACS DENSE” format.
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elsi write mat complex(handle, filename, mat)

Argument Data Type in/out Explanation
handle elsi rw handle in ELSI matrix I/O handle.
filename string in Name of file to write.
mat 2D complex double array in Matrix in “BLACS DENSE” format.

elsi write mat {real|complex} sparse writes a sparse matrix to file. Before writing a sparse matrix, MPI and CSC
matrix format should be set up properly using elsi set rw mpi and elsi set rw csc.

elsi write mat real sparse(handle, filename, row idx, col ptr, mat)

Argument Data Type in/out Explanation
handle elsi rw handle in ELSI matrix I/O handle.
filename string in Name of file to write.
row idx 1D integer array in Local row index array.
col ptr 1D integer array in Local column pointer array.
mat 1D real double array in Matrix in “PEXSI CSC” format.

elsi write mat complex sparse(handle, filename, row idx, col ptr, mat)

Argument Data Type in/out Explanation
handle elsi rw handle in ELSI matrix I/O handle.
filename string in Name of file to write.
row idx 1D integer array in Local row index array.
col ptr 1D integer array in Local column pointer array.
mat 1D complex double array in Matrix in “PEXSI CSC” format.

When writing a dense matrix to file, values smaller than a predefined threshold are discarded. The default value of this
threshold is 10−15. It can be overridden via elsi set rw zero def.

elsi set rw zero def(handle, zero def)

Argument Data Type in/out Explanation
handle elsi rw handle inout ELSI matrix I/O handle.
zero def real double in When writing a dense matrix to file, values below this thresh-

old are discarded.

An array of eight user-defined integers can be optionally set up via elsi set rw header. This array is attached to the
matrix file written out by elsi write mat {real|complex}{ sparse}. When reading a matrix file, this array may be
retrieved via elsi get rw header.

elsi set rw header(handle, header)

Argument Data Type in/out Explanation
handle elsi rw handle inout ELSI matrix I/O handle.
header 1D integer array in An array of eight integers.

3.7.3 Reading Matrices

elsi real mat {real|complex}{ sparse} reads a dense or sparse matrix from file. While writing a matrix to file can
be done in one step, it is easier to read a matrix from file in two steps, i.e., first read the dimension of the matrix and
allocate memory accordingly, then read the actual data of the matrix.

Before reading a dense matrix, MPI and BLACS should be set up properly using elsi set rw mpi and elsi set rw blacs.
elsi read mat dim is used to read the dimension of a matrix, including the number of electrons in the physical system
(for testing purpose), the global size of the matrix, and the local size of the matrix. Memory needs to be allocated
according to the return values of local row and local col. Then elsi read mat {real|complex} may be called to
read a real or complex matrix, respectively.
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elsi read mat dim(handle, filename, n electron, n basis, local row, local col)

Argument Data Type in/out Explanation
handle elsi rw handle inout ELSI matrix I/O handle.
filename string in Name of file to read.
n electron real double out Number of electrons.
n basis integer out Number of basis functions, i.e. global size of matrix.
local row integer out Local number of matrix rows.
local col integer out Local number of matrix columns.

elsi read mat real(handle, filename, mat)

Argument Data Type in/out Explanation
handle elsi rw handle inout ELSI matrix I/O handle.
filename string in Name of file to read.
mat 2D real double array out Matrix in “BLACS DENSE” format.

elsi read mat complex(handle, filename, mat)

Argument Data Type in/out Explanation
handle elsi rw handle inout ELSI matrix I/O handle.
filename string in Name of file to read.
mat 2D complex double array out Matrix in “BLACS DENSE” format.

Before reading a sparse matrix, MPI should be set up properly using elsi set rw mpi. elsi read mat dim sparse is
used to read the dimension of a matrix, including the number of electrons in the physical system (for testing purpose), the
global size of the matrix, and the local size of the matrix. Memory needs to be allocated according to the return values
of local nnz and local col. Then elsi read mat {real|complex} sparse may be called to read a real or complex
matrix, respectively.

elsi read mat dim sparse(handle, filename, n electron, n basis, global nnz, local nnz, local col)

Argument Data Type in/out Explanation
handle elsi rw handle inout ELSI matrix I/O handle.
filename string in Name of file to read.
n electron real double out Number of electrons.
n basis integer out Number of basis functions, i.e. global size of matrix.
global nnz integer out Global number of non-zeros.
local nnz integer out Local number of non-zeros.
local col integer out Local number of matrix columns.

elsi read mat real sparse(handle, filename, row idx, col ptr, mat)

Argument Data Type in/out Explanation
handle elsi rw handle inout ELSI matrix I/O handle.
filename string in Name of file to read.
row idx 1D integer array out Local row index array.
col ptr 1D integer array out Local column pointer array.
mat 1D real double array out Matrix in “PEXSI CSC” format.

elsi read mat complex sparse(handle, filename, row idx, col ptr, mat)

Argument Data Type in/out Explanation
handle elsi rw handle inout ELSI matrix I/O handle.
filename string in Name of file to read.
row idx 1D integer array out Local row index array.
col ptr 1D integer array out Local column pointer array.
mat 1D complex double array out Matrix in “PEXSI CSC” format.
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An array of eight user-defined integers can be optionally set up via elsi set rw header. This array is attached to the
matrix file written out by elsi write mat {real|complex}{ sparse}. When reading a matrix file, this array may be
retrieved via elsi get rw header.

elsi get rw header(handle, header)

Argument Data Type in/out Explanation
handle elsi rw handle inout ELSI matrix I/O handle.
header 1D integer array out An array of eight integers.

3.8 C/C++ Interface

ELSI is written in Fortran. A C interface around the core Fortran code is provided, which can be called from a C
or C++ program. Each C wrapper function corresponds to a Fortran subroutine, where we have prefixed the original
Fortran subroutine name with c for clarity and consistency. Argument lists are identical to the associated native Fortran
subroutine. For the complete definition of the C interface, the user is encouraged to look at the elsi.h header file directly.

3.9 Example Pseudo-Code

Typical workflow of ELSI within an electronic structure code is demonstrated by the following pseudo-code. In the
“test” directory of the ELSI package, there are also examples that showcase the usage of ELSI in C and Fortran.

2D Block-Cyclic Distributed Dense Matrix + ELSI Eigensolver Interface

SCF initialize

call elsi_init (eh, ELPA, MULTI_PROC, BLACS_DENSE, n_basis, n_electron, n_state)

call elsi_set_mpi (eh, mpi_comm)

call elsi_set_blacs (eh, blacs_ctxt, block_size)

do SCF cycle

Update Hamiltonian

call elsi_ev_{real|complex} (eh, ham, ovlp, eval, evec)

Update electron density

Check SCF convergence

end do

call elsi_finalize (eh)
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1D Block-Cyclic Distributed CSC Sparse Matrix + ELSI Eigensolver Interface

SCF initialize

call elsi_init (eh, ELPA, MULTI_PROC, SIESTA_CSC, n_basis, n_electron, n_state)

call elsi_set_mpi (eh, mpi_comm)

call elsi_set_blacs (eh, blacs_ctxt, block_size)

call elsi_set_csc (eh, global_nnz, local_nnz, local_col, row_idx, col_ptr)

call elsi_set_csc_blk (eh, block_size_csc)

do SCF cycle

Update Hamiltonian

call elsi_ev_{real|complex}_sparse (eh, ham, ovlp, eval, evec)

Update electron density

Check SCF convergence

end do

call elsi_finalize (eh)

Remarks

(1) Eigenvectors are returned in the “BLACS DENSE” format, which is required to be properly set up.

Arbitrarily Distributed COO Sparse Matrix + ELSI Eigensolver Interface

SCF initialize

call elsi_init (eh, ELPA, MULTI_PROC, GENERIC_COO, n_basis, n_electron, n_state)

call elsi_set_mpi (eh, mpi_comm)

call elsi_set_blacs (eh, blacs_ctxt, block_size)

call elsi_set_coo (eh, global_nnz, local_nnz, row_idx, col_idx)

do SCF cycle

Update Hamiltonian

call elsi_ev_{real|complex}_sparse (eh, ham, ovlp, eval, evec)

Update electron density

Check SCF convergence

end do

call elsi_finalize (eh)

Remarks

(1) Eigenvectors are returned in the “BLACS DENSE” format, which is required to be properly set up.
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2D Block-Cyclic Distributed Dense Matrix + ELSI Density Matrix Interface

SCF initialize

call elsi_init (eh, OMM, MULTI_PROC, BLACS_DENSE, n_basis, n_electron, n_state)

call elsi_set_mpi (eh, mpi_comm)

call elsi_set_blacs (eh, blacs_ctxt, block_size)

do SCF cycle

Update Hamiltonian

call elsi_dm_{real|complex} (eh, ham, ovlp, dm, bs_energy)

Update electron density

Check SCF convergence

end do

call elsi_finalize (eh)

1D Block-Cyclic Distributed CSC Sparse Matrix + ELSI Density Matrix Interface

SCF initialize

call elsi_init (eh, PEXSI, MULTI_PROC, SIESTA_CSC, n_basis, n_electron, n_state)

call elsi_set_mpi (eh, mpi_comm)

call elsi_set_csc (eh, global_nnz, local_nnz, local_col, row_idx, col_ptr)

call elsi_set_csc_blk (eh, block_size)

do SCF cycle

Update Hamiltonian

call elsi_dm_{real|complex}_sparse (eh, ham, ovlp, dm, bs_energy)

call elsi_get_edm_{real|complex}_sparse (eh, edm)

Update electron density

Check SCF convergence

end do

call elsi_finalize (eh)

Remarks

(1) Refer to Sec. 3.5.4 for the chemical potential determination algorithm in PEXSI.
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Arbitrarily Distributed COO Sparse Matrix + ELSI Density Matrix Interface

SCF initialize

call elsi_init (eh, PEXSI, MULTI_PROC, GENERIC_COO, n_basis, n_electron, n_state)

call elsi_set_mpi (eh, mpi_comm)

call elsi_set_coo (eh, global_nnz, local_nnz, row_idx, col_idx)

do SCF cycle

Update Hamiltonian

call elsi_dm_{real|complex}_sparse (eh, ham, ovlp, dm, bs_energy)

call elsi_get_edm_{real|complex}_sparse (eh, edm)

Update electron density

Check SCF convergence

end do

call elsi_finalize (eh)

Remarks

(1) Refer to Sec. 3.5.4 for the chemical potential determination algorithm in PEXSI.

Multiple k-points Calculations

SCF initialize

call elsi_init (eh, NTPOLY, MULTI_PROC, BLACS_DENSE, n_basis, n_electron, n_state)

call elsi_set_mpi (eh, mpi_comm)

call elsi_set_blacs (eh, blacs_ctxt, block_size)

call elsi_set_kpoint (eh, n_kpt, i_kpt, i_wt)

call elsi_set_mpi_global (eh, mpi_comm_global)

do SCF cycle

Update Hamiltonian

call elsi_dm_{real|complex} (eh, ham, ovlp, dm, bs_energy)

call elsi_get_edm_{real|complex} (eh, edm)

Update electron density

Check SCF convergence

end do

call elsi_finalize (eh)

Remarks

(1) When there are multiple k-points, there is no change in the way ELSI solver interfaces are called.

(2) The electronic structure code needs to assemble the real-space density from the density matrices returned for the
k-points. The returned band structure energy, however, is already summed over all k-points with respect to the weight
of each k-point. Refer to Sec. 3.2.4 for more information.

(3) Spin-polarized calculations may be set up similarly.

33



Geometry Relaxation Calculations

SCF initialize

call elsi_init (eh, ...)

call elsi_set_* (eh, ...)

do geometry

do SCF cycle

Update Hamiltonian

call elsi_{ev|dm}_{real|complex} (eh, ham, ovlp, ...)

Update electron density

Check SCF convergence

end do

Update geometry (overlap)

call elsi_reinit (eh)

end do

call elsi_finalize (eh)

Standard Eigenproblem

call elsi_init (eh, ELPA, MULTI_PROC, BLACS_DENSE, n_basis, n_electron, n_state)

call elsi_set_mpi (eh, mpi_comm)

call elsi_set_blacs (eh, blacs_ctxt, block_size)

call elsi_set_unit_overlap (eh, 1)

call elsi_ev_{real|complex} (eh, mat, dummy, eval, evec)

call elsi_finalize (eh)

Bethe-Salpeter Eigenproblem

call elsi_init (eh, BSEPACK, MULTI_PROC, BLACS_DENSE, n_basis, n_electron, n_state)

call elsi_set_mpi (eh, mpi_comm)

call elsi_set_blacs (eh, blacs_ctxt, block_size)

call elsi_bse_{real|complex} (eh, A, B, eval, evec)

call elsi_finalize (eh)

34



Bibliography
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License and Copyright

ELSI interface software is licensed under the 3-clause BSD license:

Copyright (c) 2015-2021, the ELSI team.

All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted

provided that the following conditions are met:

1) Redistributions of source code must retain the above copyright notice, this list of

conditions and the following disclaimer.

2) Redistributions in binary form must reproduce the above copyright notice, this list of

conditions and the following disclaimer in the documentation and/or other materials

provided with the distribution.

3) Neither the name of the "ELectronic Structure Infrastructure (ELSI)" project nor the names

of its contributors may be used to endorse or promote products derived from this software

without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR

IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY

AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL COPYRIGHT HOLDER BE

LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES

(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA,

OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN

CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT

OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

The source code of ELPA 2020.05.001 (LGPL3), libOMM 1.0.0 (BSD2), NTPoly 2.7.0 (MIT), PEXSI 1.2.0 (BSD3),
PT-SCOTCH 6.1.0 (CeCILL-C), SuperLU DIST 6.2.0 (BSD3), and BSEPACK 0.1 (BSD3) are redistributed through
this version of ELSI. Individual license of each library can be found in the corresponding subfolder.
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