ELSI Publications

  1. V. W.-z. Yu, C. Campos, W. Dawson, A. García, V. Havu, B. Hourahine, W. P. Huhn, M. Jacquelin, W. Jia, M. Keçeli, R. Laasner, Y. Li, L. Lin, J. Lu, J. Moussa, J. E. Roman, Á. Vázquez-Mayagoitia, C. Yang, and V. Blum, ELSI – An Open Infrastructure for Electronic Structure Solvers, Computer Physics Communications 256 (2020), 107459. [preprint]
  2. V. W.-z. Yu, F. Corsetti, A. García, W. P. Huhn, M. Jacquelin, W. Jia, B. Lange, L. Lin, J. Lu, W. Mi, A. Seifitokaldani, Á. Vázquez-Mayagoitia, C. Yang, H. Yang, and V. Blum, ELSI: A Unified Software Interface for Kohn-Sham Electronic Structure Solvers, Computer Physics Communications 222 (2018), 267-285. [preprint]

ELSI in Electronic Structure Code Projects

  1. M. J. T. Oliveira, N. Papior, Y. Pouillon, V. Blum, E. Artacho, D. Caliste, F. Corsetti, S. de Gironcoli, A. M. Elena, A. García, V. M. García-Suárez, L. Genovese, W. P. Huhn, G. Huhs, S. Kokott, E. Küçükbenli, A. H. Larsen, A. Lazzaro, I. V. Lebedeva, Y. Li, D. López-Durán, P. López-Tarifa, M. Lüders, M. A. L. Marques, J. Minar, S. Mohr, A. A. Mostof, A. O’Cais, M. C. Payne, T. Ruh, D. G. A. Smith, J. M. Soler, D. A. Strubbe, N. Tancogne-Dejean, D. Tildesley, M. Torrent, and V. W.-z. Yu, The CECAM Electronic Structure Library, The Journal of Chemical Physics 153 (2020), 024117.
  2. A. García, N. Papior, A. Akhtar, E. Artacho, V. Blum, E. Bosoni, P. Brandimarte, M. Brandbyge, J. I. Cerdá, F. Corsetti, R. Cuadrado, V. Dikan, J.Ferrer, J. Gale, P. García-Fernández, V. M. García-Suárez, S. García, G. Huhs, S. Illera, R. Korytár, P. Koval, I. Lebedeva, L. Lin, P. López-Tarifa, S. G. Mayo, S. Mohr, P. Ordejón, A. Postnikov, Y. Pouillon, M. Pruneda, R. Robles, D. Sánchez-Portal, J. M. Soler, R. Ullah, V. W.-z. Yu, and J. Junquera, Siesta: Recent Developments and Applications, The Journal of Chemical Physics 152 (2020), 204108.
  3. B. Hourahine, B. Aradi, V. Blum, F. Bonafe, A. Buccheri, C. Camacho, C. Cevallos, M. Y. Deshaye, T. Dumitrica, A. Dominguez, S. Ehlert, M. Elstner, T. van der Heide, J. Hermann, S. Irle, J. J. Kranz, C. Köhler, T. Kowalczyk, T. Kubar, I. S. Lee, V. Lutsker, R. J. Maurer, S. K. Min, I. Mitchell, C. Negre, T. A. Niehaus, A. M. N. Niklasson, A. J. Page, A. Pecchia, G. Penazzi, M. P. Persson, J. Rezac, C. G. Sanchez, M. Sternberg, M. Stöhr, F. Stuckenberg, A. Tkatchenko, V. W.-z. Yu, and T. Frauenheim, DFTB+, a Software Package for Efficient Approximate Density Functional Theory Based Atomistic Simulations, The Journal of Chemical Physics 152 (2020), 124101.

 ELPA References

  1. V. W.-z. Yu, J. Moussa, P. Kůs, A. Marek, P. Messmer, M. Yoon, H. Lederer, and V. Blum, GPU-Acceleration of the ELPA2 Distributed Eigensolver for Dense Symmetric and Hermitian Eigenproblems, Computer Physics Communications 262 (2021), 107808. [preprint]
  2. P. Kůs, A. Marek, S.S. Köcher, H.-H. Kowalski, C. Carbogno, Ch. Scheurer, K. Reuter, M. Scheffler, and H. Lederer, Optimizations of the Eigensolvers in the ELPA Library, Parallel Computing 85 (2019), 167-177.
  3. A. MarekV. BlumR. JohanniV. HavuB. LangT. AuckenthalerA. HeineckeH.-J. Bungartz, and H. Lederer, The ELPA Library: Scalable Parallel Eigenvalue Solutions for Electronic Structure Theory and Computational Science, Journal of Physics: Condensed Matter 26 (2014), 213201.
  4. T. Auckenthaler, V. Blum, H.-J. Bungartz, T. Huckle, R. Johanni, L. Krämer, B. Lang, H. Lederer, and P. R. Willems, Parallel Solution of Partial Symmetric Eigenvalue Problems from Electronic Structure Calculations, Parallel Computing 37 (2011), 783-794.

ChASE References

  1. J. Winkelmann, P. Springer, and E. Di Napoli, ChASE: a Chebyshev Accelerated Subspace iteration Eigensolver for sequences of Hermitian eigenvalue problems, ACM Transaction on Mathematical Software, 45 Num.2, Art.21, (2019). DOI:10.1145/3313828, [arXiv:1805.10121]
  2. M. Berljafa, D. Wortmann, and E. Di Napoli, An Optimized and Scalable Eigensolver for Sequences of Eigenvalue Problems, Concurrency & Computation: Practice and Experience 27 (2015), pp. 905-922. DOI:10.1002/cpe.3394, [arXiv:1404.4161].
  3. X. Zhang, S. Achilles, J. Winkelmann, R. Haas, A. Schleife, E. Di Napoli, Solving the Bethe-Salpeter equation on massively parallel architectures, Comp. Phys. Comm. 267 (2021), 108081. DOI:10.1016/j.cpc.2021.108081
  4. X. Wu, D. Davidović, S. Achilles,E. Di Napoli, ChASE: a distributed hybrid CPU-GPU eigensolver for large-scale hermitian eigenvalue problems, Proceedings of the Platform for Advanced Scientific Computing Conference (PASC22). DOI:10.1145/3539781.3539792, [arXiv:2205.02491 ].

libOMM References

  1. F. Corsetti, The Orbital Minimization Method for Electronic Structure Calculations with Finite-Range Atomic Basis Sets, Computer Physics Communications 185 (2014), 873-883.

PEXSI References

  1. M. Jacquelin, L. Lin, and C. Yang, PSelInv – A Distributed Memory Parallel Algorithm for Selected Inversion: The Non-Symmetric Case, Parallel Computing 74 (2018), 84-98.
  2. W. Jia and L. Lin, Robust Determination of the Chemical Potential in the Pole Expansion and Selected Inversion Method for Solving Kohn-Sham Density Functional Theory, The Journal of Chemical Physics 147 (2017), 144107.
  3. J. Moussa, Minimax Rational Approximation of the Fermi-Dirac Distribution, The Journal of Chemical Physics 145 (2016), 164108.
  4. M. Jacquelin, L. Lin, and C. Yang, PSelInv – A Distributed Memory Parallel Algorithm for Selected Inversion: The Symmetric Case, ACM Transactions on Mathematical Software 43 (2016), 21-28.
  5. L. Lin, A. García, G. Huhs, and C. Yang, SIESTA-PEXSI: Massively Parallel Method for Efficient and Accurate Ab Initio Materials Simulation without Matrix Diagonalization, Journal of Physics: Condensed Matter 26 (2014), 305503.
  6. L. Lin, M. Chen, C. Yang, and L. He, Accelerating Atomic Orbital-Based Electronic Structure Calculation via Pole Expansion and Selected Inversion, Journal of Physics: Condensed Matter 25 (2013), 295501.

EigenExa References

  1. T. Imamura, S. Yamada, and M. Machida, Development of a High-Performance Eigensolver on a Peta-Scale Next-Generation Supercomputer System, Progress in Nuclear Science and Technology 2 (2011), 643-650.

SLEPc-SIPs References

  1. M. Keçeli, F. Corsetti, C. Campos, J. E. Roman, H. Zhang, Á. Vázquez-Mayagoitia, P. Zapol, and A. F. Wagner, SIESTA‐SIPs: Massively Parallel Spectrum-Slicing Eigensolver for an Ab Initio Molecular Dynamics Package, Journal of Computational Chemistry 39 (2018), 1806-1814.
  2. M. Keçeli, H. Zhang, P. Zapol, D. A. Dixon, and A. F. Wagner, Shift-and-Invert Parallel Spectral Transformation Eigensolver: Massively Parallel Performance for Density-Functional Based Tight-Binding, Journal of Computational Chemistry 37 (2016), 448-459.
  3. C. Campos and J. E. Roman, Strategies for Spectrum Slicing Based on Restarted Lanczos Methods, Numerical Algorithms 60 (2012), 279-295.
  4. H. Zhang, B. Smith, M. Sternberg, and P. Zapol, SIPs: Shift-and-Invert Parallel Spectral Transformations, ACM Transactions on Mathematical Software 33 (2007), 9.

NTPoly References

  1. W. Dawson and T. Nakajima, Massively Parallel Sparse Matrix Function Calculations with NTPoly, Computer Physics Communications 225 (2018), 154-165.

BSEPACK References

  1. M. Shao, F. H. de Jornada, C. Yang, J. Deslippe, and S. G. Louie, Structure Preserving Parallel Algorithms for Solving the Bethe–Salpeter Eigenvalue Problem, Linear Algebra and its Applications 488 (2016), 1481-67.